Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (6): 1147-1156.doi: 10.3864/j.issn.0578-1752.2017.06.015

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Time Course Effect of Lipopolysaccharide on Toll-Like Receptors Expression in the Goose Follicular Stroma

YING ShiJia, DAI ZiChun, GUO JiaJia, SHI ZhenDan   

  1. Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Science, Nanjing 210014
  • Received:2016-07-25 Online:2017-03-16 Published:2017-03-16

Abstract: 【Objective】 This study aims to investigate the transcriptional profiling of Toll-like receptors (TLRs) and their responses to lipopolysaccharide with different treatment times in the goose follicular stroma. 【Method】 The laying process was monitored in a flock of Yangzhou geese. The geese were injected intravenously with LPS (1.5mg/kg body weight) 8 and 2 h after oviposition, and 4, 16 and 28 h before oviposition. All experimental geese were slaughtered 8 h after oviposition. Therefore, time course of LPS was achieved, namely at 0, 6, 12, 24 and 36 h after injection of LPS. Five geese at each time point were selected. After slaughtering, the ovaries were collected, the follicle morphology was observed, and the stroma of the first largest follicles (F1), F2, F3, F4 and F5 was isolated. The animals were provided with feed and water ad libitum, and maintained under natural photoperiod. For the geese 0, 24 and 36 h of after LPS treatment, all samples were used for gene expression analysis. For the other geese, RNA samples of follicular stroma of each goose were mixed with equal concentrations for gene expression analysis. RT-PCR was performed to examine the transcriptional profiling of 10 types of avian TLRs in follicular stroma. The spleen tissue was used as the positive control, and the sample without cDNA sample was used as the negative control. The expression levels of TLRs in follicular stroma among different hierarchical follicles and among different time points were tested using Real-time PCR. For data on the time course of LPS and different hierarchical follicles, the significance of differences was analyzed using the one-way ANOVA followed by Duncan’s multiple range tests. For data between stroma in control group and DF, statistical analysis was carried out using independent-samples T test. 【Result】 All 10 reported TLRs in poultry, namely TLRs 1A, 1B, 2A, 2B, 3, 4, 5, 7, 15 and 21 were expressed in goose stroma of hierarchical follicles. The expression level of TLR2A exhibited a tendency to increase with follicular growth. The TLR2A expression in F1 was higher than in F3, F4 and F5, and the TLR15 expression in F1 was higher than in F5. There were no significant effects of follicle sizes on the expression of TLRs 1A, 1B, 2B, 3, 4, 5, 7 and 21 in stroma. The morphology and colour of ovarian follicles were not changed at 0, 6 and 12 h after administration of LPS. However, the hierarchical follicles of three birds after 24 h and all birds after 36 h became an irregular ellipse or circle in shape and deep yellow in colour. Compared with the control (LPS treatment 0 h), the expression of TLRs 2A, 4 and 5 was significantly increased at 12 and 24 h after LPS treatment, the expression of TLR2B was significantly increased at 24 h, and the expression of TLRs 7 and 15 was significantly increased during the 6 to 24 h period. LPS stimulation did not significantly affect the expression of TLRs 1A, 1B, 3 and 21 during the 6 to 24 h period. Compared with the control, the expression of TLRs 1A, 2A, 2B, 4, 5, 7 and 15 was significantly increased in the denatured hierarchical follicles at 24 and 36 h, while the expression of TLRs 1B and 21 was significantly increased in the denatured hierarchical follicles at 36 h. 【Conclusion】 All the 10 members of avian TLR families are expressed in goose follicular stroma. Furthermore, with prolonged LPS treatment, the morphology of hierarchical follicles is changed, but the TLRs expression levels are still increased.

Key words: breeding goose, hierarchical follicle, lipopolysaccharide (LPS), TLRs

[1]    YANG X W, LIU L, JANG D L, WANG C L, SUN A D, SHI Z D. Improving geese production performance in “Goose-Fish” production system by competitive reduction of pathogenic bacteria in pond water. Journal of Integrative Agriculture, 2012, 11(6): 993-1001.
[2]    JIANG D L, LIU L, WANG C L, CHEN F, SUN A D, SHI Z D. Raising on water stocking density reduces geese reproductive performances via water bacteria and lipopolysaccharide contaminations in "Geese-Fish" production system. Journal of Integrative Agriculture, 2011, 10(9): 1459-1466.
[3]    ROEDER A, KIRSCHNING C J, RUPEC R A, SCHALLER M, WEINDL G, KORTING H C. Toll-like receptors as key mediators in innate antifungal immunity.MedicalMycology, 2004, 42(6): 485-498.
[4]    AKIRA S, TAKEDA K, KAISHO T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2001, 2(8): 675-680.
[5]    KAISHO T, AKIRA S. Toll-like receptor function and signaling. Journal of AllergyClinical, 2006, 117(5): 979-987. Immunology and
[6]    MICHAILIDIS G, ANASTASIADOU M, GUIBERT E, FROMENT P. Activation of innate immune system in response to lipopolysaccharide in chicken Sertoli cells. Reproduction, 2014, 148(3): 259-270.
[7]    IQBAL M, PHILBIN V J, SMITH A L. Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Veterinary Immunology and Immunopathology, 2005, 104(1-2): 117-127.
[8]    HONSTETTRE A, GHIGO E, MOYNAULT A, CAPO C, TOMAN R, AKIRA S, TAKEUCHI O, LEPIDI H, RAOULT D, MEGE J L. Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. Journal of Immunology, 2004, 172(6): 3695-3703.
[9]    BROWNLIE R, ALLAN B. Avian toll-like receptors. Cell and Tissue Research, 2011, 343(1): 121-130.
[10]   KEESTRA A M, DE ZOETE M R, BOUWMAN L I, VAN PUTTEN J P. Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. Journal of Immunology, 2010, 185(1): 460-467.
[11]   SUBEDI K, ISOBE N, NISHIBORI M, YOSHIMURA Y. Changes in the expression of toll-like receptor mRNAs during follicular growth and in response to lipopolysaccharide in the ovarian follicles of laying hens. Journal of Reproduction and Development, 2007, 53(6): 1227-1235.
[12]   MICHAILIDIS G, THEODORIDIS A, AVDI M. Transcriptional profiling of Toll-like receptors in chicken embryos and in the ovary during sexual maturation and in response to Salmonella enteritidis infection.AnimalScience, 2010, 122(3-4): 294-302. Reproduction
[13]   MICHAILIDIS G, THEODORIDIS A, AVDI M. Effects of sexual maturation and Salmonella infection on the expression of Toll-like receptors in the chicken vagina. AnimalScience, 2011, 123(3-4): 234-241. Reproduction
[14]   DAS S C, ISOBE N, YOSHIMURA Y. Expression of Toll-like receptors and avian beta-defensins and their changes in response to bacterial components in chicken sperm. Poultry Science, 2011, 90(2): 417-425.
[15]   ANASTASIADOU M, AVDI M, MICHAILIDIS G. Expression of avian beta-defensins and Toll-like receptor genes in the rooster epididymis during growth and Salmonella infection. Animal Reproduction Science, 2013, 140(3-4): 224-231.
[16]   ARIYADI B, ISOBE N, YOSHIMURA Y. Toll-like receptor signaling for the induction of mucin expression by lipopolysaccharide in the hen vagina. Poultry Science, 2014, 93(3): 673-679.
[17]   ZHANG M, NII T, ISOBE N, YOSHIMURA Y. Expression of Toll-like receptors and effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokine in the testis and epididymis of roosters. Poultry Science, 2012, 91(8): 1997-2003.
[18]   QI Y, YAN B, CHEN S, CHEN H, WANG M, JIA R, ZHU D, LIU M, LIU F, YANG Q, SUN K, WU Y, CHEN X, JING B, CHENG A. CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection. Immunobiology, 2016, 221(3): 454-461.
[19]   QI Y, CHEN S, ZHAO Q, WANG M, JIA R, ZHU D, LIU M, LIU F, CHEN X, CHENG A. Molecular cloning, tissue distribution, and immune function of goose TLR7. Immunology Letters, 2015, 163(2): 135-142.
[20]   WEI L, JIAO P, YUAN R, SONG Y, CUI P, GUO X, ZHENG B, JIA W, QI W, REN T, LIAO M. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response. Veterinary Immunology and Immunopathology, 2013, 153(1-2): 99-106.
[21]   FANG Q, PAN Z, GENG S, KANG X, HUANG J, SUN X, LI Q, CAI Y, JIAO X. Molecular cloning, characterization and expression of goose Toll-like receptor 5. Molecular Immunology, 2012, 52(3-4): 117-124.
[22]   YONG Y, LIU S, HUA G, JIA R, ZHAO Y, SUN X, LIAO M, JU X. Identification and functional characterization of Toll-like receptor 2-1 in geese. BMC Veterinary Research, 2015, 11: 108.
[23]   QIN Q, SUN A, GUO R, LEI M, YING S, SHI Z. The characteristics of oviposition and hormonal and gene regulation of ovarian follicle development in Magang geese. Reproductive Biology and Endocrinology, 2013, 11(1): 65.
[24]   SECHMAN A, ANTOS P, KATARZYNSKA D, GRZEGORZEWSKA A, WOJTYSIAK D, HRABIA A. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on secretion of steroids and STAR, HSD3B and CYP19A1 mRNA expression in chicken ovarian follicles. Toxicology Letters, 2014, 225(2): 264-274.
[25]   OLSEN R H, BISGAARD M, CHRISTENSEN J P, KABELL S, CHRISTENSEN H. Pathology and molecular characterization of Escherichia Coli associated with the avian Salpingitis-Peritonitis Disease Syndrome. Avian Diseases, 2016, 60(1): 1-7.
[26] OZOE A, ISOBE N, YOSHIMURA Y. Expression of Toll-like receptors (TLRs) and TLR4 response to lipopolysaccharide in hen oviduct. Veterinary Immunology and Immunopathology, 2009, 127(3-4): 259-268.
[27]   应诗家, 戴子淳, 郭佳佳, 李辉, 雷明明, 施振旦, 沈明君. 鹅输卵管TLR家族基因差异表达的研究. 江苏农业学报, 2015, 31(06): 1395-1399.
YING S J, DAI Z C, GUO J J, LI H, LEI M M, SHI Z D, SHEN M J. Differential expression of Toll-like receptors in geese different segments of the oviduct. Jiangsu Journal of Agricultural Sciences, 2015, 31(06): 1395-1399. (in Chinese)
[28]   ANASTASIADOU M, THEODORIDIS A, AVDI M, MICHAILIDIS G. Changes in the expression of Toll-like receptors in the chicken testis during sexual maturation and Salmonella infection. Animal Reproduction Science, 2011, 128(1-4): 93-99.
[29]   LUTTGENAU J, HERZOG K, STRUVE K, LATTER S, BOOS A, BRUCKMAIER R M, BOLLWEIN H, KOWALEWSKI M P. LPS-mediated effects and spatio-temporal expression of TLR2 and TLR4 in the bovine corpus luteum. Reproduction, 2016, 151: 391-399.
[30]   PRICE J C, SHELDON I M. Granulosa cells from emerged antral follicles of the bovine ovary initiate inflammation in response to bacterial pathogen-associated molecular patterns via Toll-like receptor pathways. Biology of Reproduction, 2013, 89(5): 119.
[31]   PRICE J C, BROMFIELD J J, SHELDON I M. Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology, 2013, 154(9): 3377-3386.
[32]   JOHNSON A L. Ovarian follicle selection and granulosa cell differentiation. Poultry Science, 2015, 94(4): 781-785.
[33]   JOHNSON A L, WOODS D C. Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation. General and Comparative Endocrinology, 2009, 163(1-2): 12-17.
[34]   WOODS D C, SCHOREY J S, Johnson A L. Toll-like receptor signaling in hen ovarian granulosa cells is dependent on stage of follicle maturation. Reproduction, 2009, 137(6): 987-996.
[35]   SHI J, ZHAO Y, WANG Y, GAO W, DING J, LI P, HU L, SHAO F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521): 187-192.
[36]   OGUEJIOFOR C F, CHENG Z, ABUDUREYIMU A, FOULADI-NASHTA A A, WATHES D C. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biology of Reproduction, 2015, 93(4): 9.
[37]   OGUEJIOFOR C F, CHENG Z, ABUDUREYIMU A, ANSTAETT O L, BROWNLIE J, FOULADI-NASHTA A A, WATHES D C. Global transcriptomic profiling of bovine endometrial immune response in vitro. II. Effect of bovine viral diarrhea virus on the endometrial response to lipopolysaccharide. Biology of Reproduction, 2015, 93(4): 9.
[38]   NII T, SONODA Y, ISOBE N, YOSHIMURA Y. Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and the subsequent recruitment of immunocompetent cells in the oviduct of laying and molting hens. Poultry Science, 2011, 90(10): 2332-2341.
[39]   ABDELSALAM M, ISOBE N, YOSHIMURA Y. Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and influx of leukocytes in the hen ovary. Poultry Science, 2011, 90(9): 2054-2062.
[40]   SCHWARZ H, SCHNEIDER K, OHNEMUS A, LAVRIC M, KOTHLOW S, BAUER S, KASPERS B, STAEHELI P. Chicken toll-like receptor 3 recognizes its cognate ligand when ectopically expressed in human cells. Journal of Interferon & Cytokine Research, 2007, 27(2): 97-101.
 
(责任编辑 林鉴非)

 
[1] YANG Hai-ming, JU Xiao-jun, WANG Zhi-yue, DING Jia-tong, WANG Xin-xi, CHEN Yong-hua. Effects of Illumination Time and Ambient Temperature on Reproductive System and Gene Expression and Secretion of Hormone in Breeding Geese [J]. Scientia Agricultura Sinica, 2015, 48(13): 2635-2644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!