Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (10): 2101-2111.doi: 10.3864/j.issn.0578-1752.2020.10.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of Soybean Isoflavones on Growth Performance, Antioxidant Performance and Intestinal Morphology of Early-Weaned Piglets

LIN XiaJing,CHEN Fang,JIANG ShouQun,JIANG ZongYong()   

  1. Institute of Animal Science, Guangdong Academy of Agricultural Sciences/State Key Laboratory of Livestock and Poultry Breeding/Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs /Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640
  • Received:2019-09-18 Accepted:2020-02-19 Online:2020-05-16 Published:2020-05-22
  • Contact: ZongYong JIANG E-mail:jiangz38@hotmail.com

Abstract:

【Objective】This experiment was conducted to investigate the effects of soy isoflavone (SI) on growth performance and its antioxidation of early-weaned piglets. 【Method】One hundred and sixty weaned piglets (Duroc×Landrace×Yorkshire) were divided by body weight and sex into five treatments with four replicates of eight piglets in each treatment. The piglets were fed either a control diet or the control diet supplemented with 10, 20, 40 and 80 mg·kg-1 of soy isoflavone, respectively. Two piglets per pen were slaughtered on the first and sixth week. 【Result】The average daily feed intake of 40 mg·kg-1 SI group was significantly higher than that of the control group (P<0.05) on day 8-42 after weaning and the whole experimental period. On day 8-42 after weaning, the feed to gain ratio of 40 mg·kg-1 SI group was significantly lower than that of the control, 10 and 20 mg·kg-1 SI groups (P<0.05). The MDA content of liver under the 40 and 80 mg·kg-1 SI groups was significantly lower than that in the control and 10 mg·kg-1 groups. The serum SOD activity of piglets under the 20 mg·kg-1 SI group was significantly higher than that under the control group, 40 and 80 mg·kg-1 SI groups (P<0.05). The GSH-px activity of liver tissue under the 10 mg·kg-1 SI group was significantly higher than that under the control group and 80 mg·kg-1 SI group (P<0.05). On day 42 after weaning, the SOD of activity serum under the 40 mg·kg-1 SI group was significantly higher than that under the control group, 10 and 80 mg·kg-1 SI groups (P<0.05). The GSH-px activity of liver under 20 mg·kg-1 SI group was significantly higher than that under the control group and 80 mg·kg-1 SI group (P<0.05). On day 42 after weaning, the SOD activity of jejunal under the 40 and 80 mg·kg-1 groups was significantly higher than that under the control group (P<0.05).The GSH-px activity of jejunum under the 40 mg·kg-1 SI group was significantly higher than that under the control group and 10 mg·kg-1 SI group (P<0.05). Dietary SI had a significant effect on MT content in jejunum, and the MT content of jejunum under the 10 mg·kg-1 SI group was significantly higher than that under the control group (P<0.05). On day 7 and 42 after weaning, the duodenal villi of piglets under the control group were arranged in tongue shape, and the top of the villi were dented and shed seriously. Compared with the control group, the damage degree of the duodenal villi in each treatment groups were reduced, the duodenal villi of piglets under the 40 mg·kg-1 group were the most complete villi. The addition of SI had a significant effect on the CD4+ level of the blood, but had no significant effect on lymphocyte conversion, CD8+, CD4+/ CD8+ (P>0.05) on day 8-42 after weaning. The CD4+ level of the 10 and 20 mg·kg-1 SI group was significantly lower than that under the control group and 80 mg·kg-1 SI group (P<0.05). 【Conclusion】 Dietary SI could improve the growth performance, antioxidant levels of 21-day-old weaned piglets, and the optimal level of SI was 40 mg·kg-1.

Key words: soy isoflavone, early-weaned piglets, antioxidation, intestinal villus morphology

Table 1

Composition and nutrient levels of the basal diet (as fed basis)"

饲粮组成Ingredients 含量Content(%) 营养水平Nutrition level
玉米 Corn 68.48 消化能DE(MJ·kg-1 13.80
大豆浓缩蛋白soy protein concentrate 16.10 粗蛋白 CP (%) 20.00
乳清粉 Whey 6.00 钙 Ca (%) 0.80
白鱼粉 Fish meal 6.00 总磷 TP (%) 0.61
L-赖氨酸盐酸盐 L-Lysine hydrochloride 0.16 有效磷 AP (%) 0.40
磷酸氢钙 Calcium hydrophosphate 0.48 赖氨酸 Lys (%) 1.34
石粉 Limestone 0.98 蛋氨酸 Met (%) 0.40
食盐 Salt 0.25 苏氨酸Thr (%) 0.86
氯化胆碱 Choline chloride 0.15 色氨酸Trp (%) 0.23
预混料1) Vitamin-mineral premix 1.40
合计 Total 100.00

Table 2

Effects of dietary soy isoflavone supplementation on growth performance of early-weaned piglets"

组别
Group
大豆异黄酮添加水平 Dietary soy isoflavone addition level (mg·kg-1)
0 10 20 40 80
平均日增重ADG(g)
0-7d 157.91±19.93 158.13±23.53 160.00±20.55 146.37±19.63 144.29±24.07
8-42d 236.12±53.16 221.64±42.26 237.14±35.97 286.92±47.81 249.18±41.59
0-42d 221.71±44.28 205.29±37.61 206.27±38.65 263.83±41.35 228.53±39.03
平均日采食量ADFI(g)
0-7d 176.34±7.09 169.64±9.15 173.66±9.21 162.05±7.00 162.95±6.75
8-42d 366.57±11.92b 334.13±8.73b 332.97±12.43b 421.98±11.57a 396.32±22.08ab
0-42d 334.87±10.96b 306.72±8.14b 306.42±10.25b 378.66±10.15a 357.42±19.51ab
料重比 F/G
0-7d 1.18±0.07 1.11±0.07 1.08±0.07 1.12±0.04 1.15±0.05
8-42d 1.79±0.40a 1.53±0.17ab 1.47±0.13b 1.70±0.28ab 1.77±0.20a
0-42d 1.55±0.08 1.50±0.07 1.51±0.10 1.45±0.02 1.58±0.02

Table 3

Effects of dietary soy isoflavone supplementation on antioxidative indices of early-weaned piglets on day 7 after weaning"

组别
Group
大豆异黄酮添加水平 Dietary soy isoflavone addition level (mg·kg-1)
0 10 20 40 80
丙二醛含量 MDA content
血清 Serum (nmol·L-1) 5.29±0.54 4.40±0.66 4.15±0.90 3.31±0.53 4.38±0.48
肝脏 Liver (nmol·mg-1 protein) 30.34±4.53a 31.07±3.31a 25.16±5.69ab 22.16±3.06b 15.15±2.25b
超氧化物歧化酶活性 SOD activity
血清 Serum (U·L-1) 56.58±3.17bc 64.87±6.28abc 70.37±3.27a 51.43±4.01bc 42.84±5.46c
肝脏 Liver (U·mg-1 protein) 42.48±1.00 43.08±2.88 46.62±2.28 42.85±2.29 42.61±1.66
谷胱甘肽过氧化物酶活性 GSH-Px activity
血清 Serum (U·L-1) 248.80±7.03 249.70±6.76 258.40±5.15 265.41±7.18 251.62±10.39
肝脏 Liver (U·mg-1 protein) 61.79±3.16b 71.59±3.09a 63.60±4.56ab 62.80±2.41ab 57.37±2.49b
金属硫含量 MT content
肝脏 Liver (nmol·g-1 protein) 0.114±0.004 0.153±0.021 0.119±0.012 0.132±0.028 0.170±0.030

Table 4

Effects of soy isoflavone on antioxidation parameters of weaned piglets on day 42 after weaning"

组别
Group
大豆异黄酮添加水平 Dietary soy isoflavone addition level (mg·kg-1)
0 10 20 40 80
丙二醛含量 MDA content
血清 Serum (nmol·L -1) 4.21±0.43 4.19±0.36 3.61±0.37 4.20±0.37 4.38±0.46
肝脏 Liver (nmol·mg-1 protein) 5.90±1.38 6.28±0.51 3.60±0.77 5.35±1.14 5.50±1.10
超氧化物歧化酶活性 SOD activity
血清 Serum (U·L -1) 71.08±2.92bc 75.53±7.34bc 80.92±1.78ab 88.05±1.75a 64.73±2.45c
肝脏 Liver (U·mg-1 protein) 42.16±2.50 41.20±1.80 44.96±2.31 41.61±1.07 42.08±1.57
谷胱甘肽过氧化物酶活性 GSH-Px activity
血清 Serum (U·L -1) 234.50±9.99 232.71±8.79 236.29±5.85 249.57±8.67 242.22±7.70
肝脏 Liver (U·mg-1 protein) 61.35±2.46b 65.11±3.40ab 73.46±2.76a 66.87±2.87ab 60.10±2.51b
金属硫含量 MT content
肝脏 Liver (nmol·g-1 protein) 0.119±0.014 0.129±0.016 0.125±0.016 0.100±0.009 0.096±0.013

Table 5

Effects of soy isoflavone on small intestinal antioxidation indices of weaned piglets"

组别
Group
大豆异黄酮添加水平 Dietary soy isoflavone addition level (mg·kg-1)
0 10 20 40 80
断奶后7 d Day 7 after weaning
丙二醛含量MDA content (nmol·mg-1 protein) 0.21±0.02 0.25±0.04 0.25±0.03 0.18±0.02 0.21±0.03
超氧化物歧化酶活性SOD activity (U·mg-1 protein) 38.22±3.11 51.51±5.23 53.41±6.37 40.83±4.25 39.97±3.54
谷胱甘肽过氧化物酶活性GSH-Px activity (U·mg-1 protein) 26.08±2.88 29.28±3.03 22.10±1.93 19.99±1.98 25.25±2.22
金属硫蛋白含量MT content (nmol·g-1protein) 5.81±0.74 7.07±1.08 6.48±1.95 4.66±0.53 4.97±1.14
断奶后42 d Day 42 after weaning
丙二醛含量MDA content (nmol·mg-1 protein) 0.27±0.06 0.18±0.04 0.17±0.02 0.20±0.02 0.21±0.03
超氧化物歧化酶活性SOD activity (U·mg-1 protein) 39.04±4.49b 48.21±3.84ab 47.28±2.90ab 52.26±1.90a 50.37±3.40a
谷胱甘肽过氧化物酶活性GSH-Px activity (U·mg-1 protein) 21.07±2.67b 23.68±3.20b 26.62±2.21ab 36.19±2.99a 25.70±3.14ab
金属硫蛋白含量MT content (nmol·g-1 protein) 8.79±0.95b 15.95±1.18a 13.30±1.53ab 12.22±1.78ab 11.05±1.76ab

Fig. 1

Effects of soy isoflavone on duodenum mucosa morphology on day 7 or 42 after weaning A: Duodenum mucosa morphology of control group on day 7 after weaning; B: Duodenum mucosa morphology of 10·kg-1 ISO group on day 7 after weaning; C: Duodenum mucosa morphology of 20 mg·kg-1 ISO group on day 7 after weaning; D: Duodenum mucosa morphology of 40 mg·kg-1 ISO group on day 7 after weaning; E: Duodenum mucosa morphology of 80 mg·kg-1 ISO group on day 7 after weaning; F: Duodenum mucosa morphology of control on day 42 after weaning; G: Duodenum mucosa morphology of 10 mg·kg-1 ISO group on day 42 after weaning; H: Duodenum mucosa morphology of 20 mg·kg-1 ISO group on day 42 after weaning; I: Duodenum mucosa morphology of 40 mg·kg-1 ISO group on day 42 after weaning; J: Duodenum mucosa morphology of 80 mg·kg-1 ISO group on day 42 after weaning"

Table 6

Effects of soy isoflavone on immunity index in weaned piglets"

组别
Group
大豆异黄酮添加水平Dietary soy isoflavone addition level (mg·kg-1)
0 10 20 40 80
断奶后7 d Day 7 after weaning
血液淋巴细胞转化率
Lymphocyte proliferation conversion efficiency (OD492)
0.34±0.13 0.33±0.07 0.30±0.07 0.35±0.14 0.36±0.04
CD4+ (%) 34.25±8.85 35.40±6.19 30.75±5.97 31.17±6.05 30.14±4.71
CD8+(%) 23.75±4.35 24.20±4.55 23.75±3.99 20.50±6.25 20.57±3.10
CD4+/ CD8+ 1.44±0.33 1.47±0.19 1.30±0.19 1.47±0.29 1.49±0.26
断奶后42 d Day 42 after weaning
血液淋巴细胞转化率
Lymphocyte proliferation conversion efficiency
0.17±0.04 0.19±0.08 0.15±0.06 0.20±0.06 0.17±0.09
CD4+(%) 34.12±2.71a 27.33±2.50b 27.67±4.93b 32.17±4.40ab 33.00±5.34a
CD8+(%) 22.00±3.41 20.17±2.14 20.00±1.79 19.33±3.27 22.43±4.24
CD4+/ CD8+ 1.58±0.22 1.36±0.12 1.38±0.21 1.68±0.15 1.51±0.34
[1] PIETRO C, GIANFRANCO G . Oxidant/antioxidant balance in animal nutrition and health: The role of protein oxidation. Frontiers in Veterinary Science, 2015,2:48. DOI: 10.3389/fvets.2015.00048.
[2] MCLAMB B L, GIBSON A J, OVERMAN E L, CHAD S . Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS One, 2013,8(4):e59838. DOI: 10.1371/journal. pone.0059838.
[3] 赵娇, 周招洪, 梁小芳, 毛湘冰, 陈代文, 余冰 . 葡萄籽原花青素及维生素E对氧化应激仔猪生长性能、血清氧化还原状态和肝脏氧化损伤的影响. 中国农业科学, 2013,46(19):4157-4164.
ZHAO J, ZHOU Z H, LIANG X F, MAO X B, CHEN D W, YU B . Effects of grape seed procyanidins and vitamin E on growth performance, serum REDOX state and liver oxidative damage of piglets under oxidative stress. Scientia Agricultura Sinica, 2013,46(19):4157-4164. (in Chinese)
[4] BHATTACHARYYA A, CHATTOPADHYAY R, MITRA S, CROWE S E . Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews, 2014,94(2):329-354.DOI: 10.1152/physrev.00040.2012.
[5] GAFFER G G, ELGAWISH R A, HMA A, EBAID H M, TAG H M . Dietary soy isoflavones during pregnancy suppressed the immune function in male offspring albino rats. Toxicology Reports, 2018,5:296. DOI: 10.1016/j.toxrep.2018.02.002. eCollection 2018.
[6] DHAYAKARAN R P A, NEETHIRAJAN S, XUE J, JOHN S . Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT- Food Science and Technology, 2015,63(2):859-865. DOI: 10.1016/j.lwt.2015.04.053
[7] ZHOU C, LIN H, GE X, NIU J, WANG J, WANG Y, CHEN L, HUANG Z, YU W, TAN X . The Effects of dietary soybean isoflavones on growth, innate immune responses, hepatic antioxidant abilities and disease resistance of juvenile golden pompano Trachinotus ovatus. Fish & Shellfish Immunology, 2015,43(1):158-166. DOI: 10.1016/j.fsi.2014.12.014. Epub 2014 Dec 23.
[8] 李方方, 朱涛涛, 张勇, 朱宇旌 . 大豆异黄酮对哺乳母猪生产性能、血液生理生化指标和粪便微生物菌群的影响. 动物营养学报, 2015,27(9):2803-2810.
doi: 10.3969/j.issn.1006-267x.2015.09.018
LI F F, ZHU T T, ZHANG Y, ZHU Y S . Effects of soybean isoflavones on the production performance, blood physiological and biochemical indexes and fecal microflora of mammalian sows. Chinese Journal of Animal Nutrition, 2015,27(9):2803-2810. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2015.09.018
[9] WANG B, WU C . Dietary soy isoflavones alleviate dextran sulfate sodium-induced inflammation and oxidative stress in mice. Experimental and Therapeutic Medicine, 2017,14(1):276-282. DOI: 10.3892/etm.2017.4469. Epub 2017 May 18. Epub 2017 May 18.
[10] 王冬兰, 程义勇, 蒋与刚, 顾景范 . 大鼠组织中金属硫蛋白测定方法的建立及应用. 解放军预防医学杂志, 1995(4):282-285.
WANG D L, CHENG Y Y, JIANG Y G, GU J F . Establishment and application of metallothionein assay in rat tissues. Journal of Preventive Medicine of Chinese People's Liberation Army, 1995(4):282-285. (in Chinese)
[11] 任成林, 田勇, 梁淑珍 . 动物组织HE染色石蜡切片技术的改进. 河北北方学院学报(自然科学版), 2007,23(1):41-46.
REN C L, TIAN Y, LIANG S Z . Improvement of HE staining paraffin section technique for animal tissues. Journal of Hebei North University (Natural Science Edition), 2007,23(1):41-46. (in Chinese)
[12] 赵嘉惠, 张华屏, 王春芳 . MTT法在检测细胞增殖方面的探讨. 山西医科大学学报, 2007,38(3):262-263.
ZHAO J H, ZHANG H P, WANG C F . Detection of cell proliferation by MTT assay. Journal of Shanxi Medical University, 2007,38(3):262-263. (in Chinese)
[13] 黎桂玉, 段雪琳, 林基勇, 彭岳, 赵铁建 . 大豆异黄酮对围绝经期综合征动物模型性激素水平及病理变化的影响. 广西中医药大学学报, 2016,19(3):4-8.
LI G Y, DUAN X L, LIN J Y, PENG Y, ZHAO T J . Effects of soybean isoflavones on sex hormone levels and pathological changes in animal models of perimenopausal syndrome. Journal of Guangxi University of Traditional Chinese Medicine, 2016,19(3):4-8. (in Chinese)
[14] 曹满湖, 罗理成, 孙佳静, 方热军, 朱静波 . 大豆异黄酮对产蛋后期蛋鸡卵巢机能的影响. 动物营养学报, 2016,28(8):2458-2464.
CAO M H, LUO L C, SUN J J, FANG R J, ZHU J B . Effects of soybean isoflavones on ovarian function of laying hens at the late stage of egg production. Chinese Journal of Animal Nutrition, 2016,28(8):2458-2464. (in Chinese)
[15] JI S, WILLIS G M, FRANK G R, CORNELIUS S G, SPURLOCK M E . Soybean isoflavones, genistein and genistin, inhibit rat myoblast proliferation, fusion and myotube protein synthesis. Journal of Nutrition, 1999,129(7):1291-1297. DOI: 10.1093/jn/129.7.1291.
[16] 林成招, 马海田, 邹思湘, 陈伟华, 王国杰 . 大豆异黄酮对大鼠小肠上皮细胞生长及葡萄糖和氨基酸吸收的影响. 南京农业大学学报, 2005,1:71-75.
LIN C Z, MA H T, ZOU S X, CHEN W H, WANG G J . Effects of soybean isoflavones on the growth of small intestinal epithelial cells and the absorption of glucose and amino acids in rats. Journal of Nanjing Agricultural University, 2005,1:71-75. (in Chinese)
[17] 朱志宁, 郝振荣, 王明, 蒋林书, 郭玉琴 . 大豆异黄酮对高产奶牛泌乳后期乳腺肥大细胞分泌肿瘤坏死因子-α和表面型免疫球蛋白A水平的影响. 动物营养学报, 2011, (1):112-121.
doi: 10.3969/j.issn.1006-267x.2011.01.017
ZHU Z N, HAO Z R, WANG M, JIANG L S, GUO Y Q . Effects of soybean isoflavones on tumor necrosis factor-ii and surface type immunoglobulin A levels secreted by mammary cells in high-yielding dairy cows at late lactation stage. Chinese Journal of Animal Nutrition 2011, (1):112-121. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2011.01.017
[18] 陈丽 . 大豆异黄酮对雌性巴马香猪子宫发育和血清免疫指标的影响及其机理[D]. 长沙:湖南农业大学, 2017.
CHEN L . Effects of soybean isoflavones on uterine development and serum immunity of female ba-xiang pigs and its mechanism[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[19] GREINER L L, STAHLY T S, STABEL T J . The effect of dietary soy genistein on pig growth and viral replication during a viral challenge. Journal of Animal Science, 2001,79(12):3113-3119. DOI: 10.2527/ 2001.79123113x.
[20] 郭慧君, 韩正康, 王国杰 . 日粮添加大豆黄酮对去势仔猪生长性能及有关内分泌的影响. 中国畜牧杂志, 2002,38(2):17-18.
GUO H J, HAN Z K, WANG G J . Effects of dietary flavonoids on growth performance and endocrine of castrated piglets. Chinese Journal of Animal Science, 2002,38(2):17-18. (in Chinese)
[21] 程忠刚, 林映才, 周桂莲, 余德谦, 蒋守群, 蒋宗勇 . 大豆黄酮对仔猪生产性能及血液生化指标的影响. 河南科技大学学报:农学版, 2003,23(4):44-48.
CHENG Z G, LIN Y C, ZHOU G L, YU D Q, JIANG S Q, JIANG Z Y . Effects of soybean flavonoids on the performance and blood biochemical indexes of piglets. Journal of Henan University of Science and Technology: Agronomy, 2003,23(4):44-48. (in Chinese)
[22] 赵莹 . 早期断奶对仔猪消化系统的影响. 国外畜牧学-猪与禽, 2014(3):52-53.
ZHAO Y . Effect of early weaning on digestive system of piglets. Pigs and Poultry, 2014(3):52-53. (in Chinese)
[23] 刘永祥, 刘艳丽, 姜东风, 朱宽佑 . 共轭亚油酸和鱼油组合对雄性肉鸡屠体性状、肌肉脂肪酸组成和脂质过氧化状态的影响. 动物营养学报, 2015,27(8):2517-2526.
LIU Y X, LIU Y L, JIANG D F, ZHU K Y . Effects of conjugated linoleic acid and fish oil combination on carcass characteristics, muscle fatty acid composition and lipid peroxidation state of male broilers. Chinese Journal of Animal Nutrition, 2015,27(8):2517-2526. (in Chinese)
[24] 张笑天, 郑晓瑛 . 氧化自由基清除剂超氧化物歧化酶与疾病. 中国公共卫生, 2014,30(10):1349-1352.
ZHANG X T, ZHENG X Y . Oxidative radical scavenger superoxide dismutase and disease. China Public Health, 2014,30(10):1349-1352. (in Chinese)
[25] YAO X, EI-SAMAHY M A , FAN L , ZHENG L, JIN Y, PANG J, ZHANG G, LIU Z, WANG F . In vitro, influence of selenium on the proliferation of and steroidogenesis in goat luteinized granulosa cells. Theriogenology, 2018,1(114):70-80. DOI: 10.1016/j.theriogenology.2018.03.014.Epub 2018 Mar 20.
[26] PARK J D, LIU Y, KLAASSEN C D . Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology, 2001,163(2-3):93-100. DOI: 10.1016/S0300-483X(01) 00375-4.
[27] CAIRO P L G, GOIS F D, SBARDELLA M, ALLAMAN I, CANTARELLI V, COSTA L B . Effects of dietary supplementation of red pepper (\r, Schinus terebinthifolius\r, Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs. Journal of the Science of Food and Agriculture, 2018,98(2):541-548. DOI: 10.1002/jsfa.8494.
[28] JIAO L F, KE Y L, XIAO K, SONG Z, HU C H, SHI B . Effects of cello-oligosaccharideon intestinal microbiota and epithelial barrierfunction of weanling pigs. Journal of Animal Science, 2015,93(3):1157-1164. DOI: 10.2527/jas2014-8248.
doi: 10.2527/jas.2014-8248
[29] GREGORCZYK I MAŚLANKA T . Significant expression of Foxp3 in murine extrathymic CD4+CD8+ double positive T cells. Polish Journal of Veterinary Sciences, 2017,20(4):815-817. DOI: 10.1515/pjvs-2017-0102.
[30] MAREK S, MARZENA L, MAGDALENA R, SURMAN M, MYTAR B, MATYJA A, SIEDLAR M, KULIG J . Preoperative Neutrophil-Lymphocyte and Lymphocyte-Monocyte Ratios Reflect Immune Cell Population Rearrangement in Resectable Pancreatic Cancer. Annals of Surgical Oncology, 2016,24(3):1-8. DOI: 10.1245/ s10434-016-5634-0. Epub 2016 Oct 21.
[31] 林映才, 蒋宗勇, 刘建中, 陈建新, 杨晓建, 余德谦, 郑黎, 程忠刚 . 大豆黄素对生长猪的生产性能和血液免疫指标的影响. 饲料博览, 2001,6:4-6.
LIN Y C, JIANG Z Y, LIU J Z, CHEN J X, YANG X J, YU D Q, ZHENG L, CHENG Z G . Effect of daidzein on the production performance and blood immune index of growing pigs. Feed Review, 2001,6:4-6. (in Chinese)
[32] 张响英, 王根林, 唐现文, 黄金明 . 大豆黄酮对仔公猪细胞免疫功能的影响. 黑龙江畜牧兽医, 2005(1):31-32.
ZHANG X Y, WANG G L, TANG X W, HUANG J M . effects of soybean flavonoids on cellular immunity in young boars. Heilongjiang Animal Husbandry and Veterinary Medicine, 2005(1):31-32. (in Chinese)
[33] 张汤杰, 陈伟华, 陈杰 . 注射大豆黄酮对仔猪淋巴细胞转化率影响的研究. 江苏农学院学报, 1998,19(4):86-88.
ZHANG T J, CHEN W H, CHEN J . Effect of soybean flavone injection on lymphocyte conversion in piglets. Jiangsu Journal of Agricultural Sciences, 1998,19(4):86-88. (in Chinese)
[34] 张蕊, 姜义宝, 杨玉荣, 梁宏德 . 大豆异黄酮的特性及其应用研究进展. 动物营养学报, 2011,23(11):1884-1890.
ZHANG R, JIANG Y B, YANG Y R, LIANG H D . Characteristics and application of isoflavones in soybean. Chinese Journal of Animal Nutrition, 2011,23(11):1884-1890. (in Chinese)
[1] LI Zhen,LIU ZhiYong,JIANG WuJun,HE XuJiang,YAN WeiYu,ZHANG LiZhen,ZENG ZhiJiang. Effects of Natural Bee Bread on Blood Lipid, Antioxidation and Immune Function in Rats with Hyperlipidemia [J]. Scientia Agricultura Sinica, 2019, 52(16): 2912-2920.
[2] TIAN Ping-ping, LI Ren-zhou, JIAN Yong-jian, LI Jian-ming, WANG Jie. Analysis of Antioxidative Functional Components from Walnut Green Rind and Its Antioxidation Stability [J]. Scientia Agricultura Sinica, 2016, 49(3): 543-553.
[3] BAI Ya-juan, LIU Lei, ZHANG Rui-fen, DENG Yuan-yuan, HUANG Fei, ZHANG Ming-wei. Longan Pulp Extracts Ameliorate Scopolamine-Induced Learning and Memory of Impairment Mice [J]. Scientia Agricultura Sinica, 2016, 49(21): 4203-4213.
[4] ZHANG You-lin, ZHANG Run-guang, ZHONG Yu. Chemical Component, Antimicrobial Effect, Antioxidation Activity and Toxicological Character of Thyme Essential Oil [J]. Scientia Agricultura Sinica, 2011, 44(9): 1888-1897.
[5] CHEN Zheng-li,LUO Qi-hui,CHENG An-chun
. Effect of Soy Isoflavone on the Expression of IL-2 mRNA in the Ovariectomized Rat’s Spleen
[J]. Scientia Agricultura Sinica, 2010, 43(9): 1948-1953 .
[6] YU Hua-juan,SUN Zhi-da,XIE Bi-jun
. Antioxidation Role of Procyanidins from Lotus Seedpod in Oils
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2132-2140 .
[7] LI Jian-ke,LI Guo-xiu,ZHAO Yan-hong,YU Chao-zhou. Composition of Pomegranate Peel Polyphenols and Its Antioxidant Activities
[J]. Scientia Agricultura Sinica, 2009, 42(11): 4035-4041 .
[8] . Comparative Study on the Antioxidant Stability of Anthocyanin Extracts in Seed Coats of Three Black Cereal and Oil Crops [J]. Scientia Agricultura Sinica, 2007, 40(9): 2045-2052 .
[9] ,,,,,,. Correlation Between Antioxidation, and Content of Total Phenolics and Anthocyanin in Black Soybean Accessions [J]. Scientia Agricultura Sinica, 2006, 39(8): 1545-1552 .
[10] ,,. The Antioxidative Activity of Ganoderma lucidum Peptides in Vitro Test [J]. Scientia Agricultura Sinica, 2006, 39(12): 2603-2607 .
[11] ,,,,,,. Hypolipidemic and Antioxidative Effects of Black Rice Pericarp Extract Accompanied by its Components Analysis [J]. Scientia Agricultura Sinica, 2006, 39(11): 2368- .
[12] ,,,,,,. ntioxidations and Their Correlations with Total Flavonid and Anthocyanin Contents in Different Black Rice Varieties [J]. Scientia Agricultura Sinica, 2005, 38(07): 1324-1331 .
[13] ,. Study on the Anti-Oxidative Effect and Mechanism of Polysaccharide from Rapeseed(RSPS) [J]. Scientia Agricultura Sinica, 2005, 38(01): 157-162 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!