Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 2067-2076.doi: 10.3864/j.issn.0578-1752.2022.10.016
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles
YAN Ya(),WANG GuangWen,KONG FanDi,WANG XuYuan,WANG YiHan,LI JunPing,ZHAO YuHui,LI ChengJun,CHEN HuaLan,JIANG Li(
)
[1] |
司振书, 王守山, 胡冬民. 禽流感病毒基因组及其编码蛋白的结构与功能. 广东农业科学, 2012, 39(1): 126-129. doi: 10.16768/j.issn.1004-874x.2012.01.003.
doi: 10.16768/j.issn.1004-874x.2012.01.003 |
SI Z S, WANG S S, HU D M. Structure and function of genome and its encoding protein of avian influenza virus. Guangdong Agricultural Sciences, 2012, 39(1): 126-129. doi: 10.16768/j.issn.1004-874x.2012.01.003. (in Chinese)
doi: 10.16768/j.issn.1004-874x.2012.01.003 |
|
[2] |
罗维玉, 朱鹏阳, 张杰, 胡永浩, 孔晖晖, 梁立滨, 周圆, 李呈军, 姜丽, 陈化兰. 人源肺细胞cDNA文库构建及与流感病毒NP互作宿主蛋白的筛选. 中国农业科学, 2016, 49(22): 4451-4459. doi: 10.3864/j.issn.0578-1752.2016.22.017.
doi: 10.3864/j.issn.0578-1752.2016.22.017 |
LUO W Y, ZHU P Y, ZHANG J, HU Y H, KONG H H, LIANG L B, ZHOU Y, LI C J, JIANG L, CHEN H L. Construction of cDNA library derived from human lung epithelial cell lines and screening for host cellular proteins interacting with influenza virus nucleoprotein. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459. doi: 10.3864/j.issn.0578-1752.2016.22.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.22.017 |
|
[3] |
KOSIK I, YEWDELL J W. Influenza hemagglutinin and neuraminidase: Yin⁻Yang proteins coevolving to thwart immunity. Viruses, 2019, 11(4): 346. doi: 10.3390/v11040346.
doi: 10.3390/v11040346 |
[4] |
WU Y, WU Y, TEFSEN B, SHI Y, GAO G F. Bat-derived influenza-like viruses H17N10 and H18N11. Trends in Microbiology, 2014, 22(4): 183-191. doi: 10.1016/j.tim.2014.01.010.
doi: 10.1016/j.tim.2014.01.010 |
[5] |
WU N C, WILSON I A. Influenza hemagglutinin structures and antibody recognition. Cold Spring Harbor Perspectives in Medicine, 2020, 10(8): a038778. doi: 10.1101/cshperspect.a038778.
doi: 10.1101/cshperspect.a038778 |
[6] |
EDINGER T O, POHL M O, STERTZ S. Entry of influenza A virus: Host factors and antiviral targets. The Journal of General Virology, 2014, 95(Pt 2): 263-277. doi: 10.1099/vir.0.059477-0.
doi: 10.1099/vir.0.059477-0 |
[7] |
赵青青, 李俊平, 梁立滨, 黄山雨, 周陈陈, 赵玉辉, 王倩, 周圆, 姜丽, 陈化兰, 李呈军. 流感病毒PA蛋白与宿主蛋白PCBP1的相互作用. 中国农业科学, 2018, 51(17): 3389-3396. doi: 10.3864/j.issn.0578-1752.2018.17.013.
doi: 10.3864/j.issn.0578-1752.2018.17.013 |
ZHAO Q Q, LI J P, LIANG L B, HUANG S Y, ZHOU C C, ZHAO Y H, WANG Q, ZHOU Y, JIANG L, CHEN H L, LI C J. Interaction between influenza virus PA protein and host protein PCBP1. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396. doi: 10.3864/j.issn.0578-1752.2018.17.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.17.013 |
|
[8] |
GAN Q N, LI T T, HU B, LIAN M, ZHENG X F. HSCARG inhibits activation of NF-kappaB by interacting with IkappaB kinase-beta. Journal of Cell Science, 2009, 122(Pt 22): 4081-4088. doi: 10.1242/jcs.054007.
doi: 10.1242/jcs.054007 |
[9] |
WU Y H, CHIU D T Y, LIN H R, TANG H Y, CHENG M L, HO H Y. Glucose-6-phosphate dehydrogenase enhances antiviral response through downregulation of NADPH sensor HSCARG and upregulation of NF-κB signaling. Viruses, 2015, 7(12): 6689-6706. doi: 10.3390/v7122966.
doi: 10.3390/v7122966 |
[10] |
ZHANG M, HU B, LI T T, PENG Y Y, GUAN J H, LAI S S, ZHENG X F. A CRM1-dependent nuclear export signal controls nucleocytoplasmic translocation of HSCARG, which regulates NF-κB activity. Traffic, 2012, 13(6): 790-799. doi: 10.1111/j.1600-0854.2012.01346.x.
doi: 10.1111/j.1600-0854.2012.01346.x. |
[11] |
ZANG W C, ZHENG X F. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radical Biology and Medicine, 2020, 160: 768-774. doi: 10.1016/j.freeradbiomed.2020.09.016.
doi: 10.1016/j.freeradbiomed.2020.09.016 |
[12] |
LEVY D E, GARCı́A-SASTRE A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine & Growth Factor Reviews, 2001, 12(2/3): 143-156. doi: 10.1016/S1359-6101(00)00027-7.
doi: 10.1016/S1359-6101(00)00027-7 |
[13] |
PENG Y Y, XU R D, ZHENG X F. HSCARG negatively regulates the cellular antiviral RIG-I like receptor signaling pathway by inhibiting TRAF3 ubiquitination via recruiting OTUB1. PLoS Pathogens, 2014, 10(4): e1004041. doi: 10.1371/journal.ppat.1004041.
doi: 10.1371/journal.ppat.1004041 |
[14] |
LI S, ZHENG H, MAO A P, ZHONG B, LI Y, LIU Y, GAO Y, RAN Y, PO T E, SHU H B. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. Journal of Biological Chemistry, 2010, 285(7): 4291-4297. doi: 10.1074/jbc.M109.074971.
doi: 10.1074/jbc.M109.074971 |
[15] |
GIBBERT K, SCHLAAK J, YANG D, DITTMER U. IFN-α subtypes: Distinct biological activities in anti-viral therapy. British Journal of Pharmacology, 2013, 168(5): 1048-1058. doi: 10.1111/bph.12010.
doi: 10.1111/bph.12010 |
[16] |
FAN W H, JIAO P T, ZHANG H, CHEN T, ZHOU X T, QI Y, SUN L, SHANG Y L, ZHU H F, HU R L, LIU W J, LI J. Inhibition of African swine fever virus replication by porcine type I and type II interferons. Frontiers in Microbiology, 2020, 11: 1203. doi: 10.3389/fmicb.2020.01203.
doi: 10.3389/fmicb.2020.01203 |
[17] |
LEE S, ISHITSUKA A, NOGUCHI M, HIROHAMA M, FUJIYASU Y, PETRIC P P, SCHWEMMLE M, STAEHELI P, NAGATA K, KAWAGUCHI A. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Science Immunology, 2019, 4(40): eaau4643. doi: 10.1126/sciimmunol.aau4643.
doi: 10.1126/sciimmunol.aau4643 |
[18] |
XIAO H, KILLIP M J, STAEHELI P, RANDALL R E, JACKSON D. The human interferon-induced MxA protein inhibits early stages of influenza A virus infection by retaining the incoming viral genome in the cytoplasm. Journal of Virology, 2013, 87(23): 13053-13058. doi: 10.1128/JVI.02220-13.
doi: 10.1128/JVI.02220-13 |
[19] |
HALLER O, STAEHELI P, SCHWEMMLE M, KOCHS G. Mx GTPases: Dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 2015, 23(3): 154-163. doi: 10.1016/j.tim.2014.12.003.
doi: 10.1016/j.tim.2014.12.003 |
[20] |
HALLER O, KOCHS G. Mx genes: Host determinants controlling influenza virus infection and trans-species transmission. Human Genetics, 2020, 139(6/7): 695-705. doi: 10.1007/s00439-019-02092-8.
doi: 10.1007/s00439-019-02092-8 |
[21] |
DESAI T M, MARIN M, CHIN C R, SAVIDIS G, BRASS A L, MELIKYAN G B. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathogens, 2014, 10(4): e1004048. doi: 10.1371/journal.ppat.1004048.
doi: 10.1371/journal.ppat.1004048 |
[22] |
MEINEKE R, RIMMELZWAAN G F, ELBAHESH H. Influenza virus infections and cellular kinases. Viruses, 2019, 11(2): 171. doi: 10.3390/v11020171.
doi: 10.3390/v11020171 |
[23] |
HAN J, PEREZ J T, CHEN C, LI Y, BENITEZ A, KANDASAMY M, LEE Y, ANDRADE J, TENOEVER B, MANICASSAMY B. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Reports, 2018, 23(2): 596-607. doi: 10.1016/j.celrep.2018.03.045.
doi: 10.1016/j.celrep.2018.03.045 |
[24] |
WANG G W, JIANG L, WANG J L, ZHANG J, KONG F D, LI Q B, YAN Y, HUANG S Y, ZHAO Y H, LIANG L B, LI J P, SUN N, HU Y Z, SHI W J, DENG G H, CHEN P C, LIU L L, ZENG X Y, TIAN G B, BU Z G, CHEN H L, LI C J. The G protein-coupled receptor FFAR2 promotes internalization during influenza A virus entry. Journal of Virology, 2020, 94(2): e01707-e01719. doi: 10.1128/JVI.01707-19.
doi: 10.1128/JVI.01707-19 |
[25] |
LUO W Y, ZHANG J, LIANG L B, WANG G W, LI Q B, ZHU P Y, ZHOU Y, LI J P, ZHAO Y H, SUN N, HUANG S Y, ZHOU C C, CHANG Y, CUI P F, CHEN P C, JIANG Y P, DENG G H, BU Z G, LI C J, JIANG L, CHEN H L. Phospholipid scramblase1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathogens, 2018, 14(1): e1006851. doi: 10.1371/journal.ppat.1006851.
doi: 10.1371/journal.ppat.1006851 |
[26] |
QIAO Y K, YAN Y, TAN K S, TAN S S L, SEET J E, ARUMUGAM T V, CHOW V T K, DE YUN WANG, TRAN T. CD151, a novel host factor of nuclear export signaling in influenza virus infection. Journal of Allergy and Clinical Immunology, 2018, 141(5): 1799-1817. doi: 10.1016/j.jaci.2017.11.032.
doi: 10.1016/j.jaci.2017.11.032 |
[27] |
FELGENHAUER U, SCHOEN A, GAD H H, HARTMANN R, SCHAUBMAR A R, FAILING K, DROSTEN C, WEBER F. Inhibition of SARS-CoV-2 by type I and type III interferons. The Journal of Biological Chemistry, 2020, 295(41): 13958-13964. doi: 10.1074/jbc.AC120.013788.
doi: 10.1074/jbc.AC120.013788 |
[28] |
COCCIA E M. IFN regulation and functions in myeloid dendritic cells. Cytokine & Growth Factor Reviews, 2008, 19(1): 21-32. doi: 10.1016/j.cytogfr.2007.10.005.
doi: 10.1016/j.cytogfr.2007.10.005 |
[29] |
YAMAGAMI M, OTSUKA M, KISHIKAWA T, SEKIBA K, SEIMIYA T, TANAKA E, SUZUKI T, ISHIBASHI R, OHNO M, KOIKE K. ISGF3 with reduced phosphorylation is associated with constitutive expression of interferon-induced genes in aging cells. Npj Aging and Mechanisms of Disease, 2018, 4: 11. doi: 10.1038/s41514-018-0030-6.
doi: 10.1038/s41514-018-0030-6 |
[30] |
CHEN X Y, LIU S S, GORAYA M U, MAAROUF M, HUANG S L, CHEN J L. Host immune response to influenza A virus infection. Frontiers in Immunology, 2018, 9: 320. doi: 10.3389/fimmu.2018.00320.
doi: 10.3389/fimmu.2018.00320 |
[31] |
HOLZINGER D, JORNS C, STERTZ S, BOISSON-DUPUIS S, THIMME R, WEIDMANN M, CASANOVA J L, HALLER O, KOCHS G. Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. Journal of Virology, 2007, 81(14): 7776-7785. doi: 10.1128/JVI.00546-06.
doi: 10.1128/JVI.00546-06 |
[32] |
LI T, GUAN J, LI S, ZHANG X, ZHENG X. HSCARG downregulates NF-κB signaling by interacting with USP7 and inhibiting NEMO ubiquitination. Cell Death & Disease, 2014, 5(5): e1229. doi: 10.1038/cddis.2014.197.
doi: 10.1038/cddis.2014.197 |
[33] |
LIAN M, ZHENG X F. HSCARG regulates NF-kappaB activation by promoting the ubiquitination of RelA or COMMD1. The Journal of Biological Chemistry, 2009, 284(27): 17998-18006. doi: 10.1074/jbc.M809752200.
doi: 10.1074/jbc.M809752200 |
[1] | YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824. |
[2] | WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090. |
[3] | JIA YunHui,XU ChengZhi,SUI JinYu,WU YunPu,XU BangFeng,CHEN Yan,YANG HuanLiang,QIAO ChuanLing,CHEN HuaLan. Immunogenicity Evaluation of Eukaryotic Expressing Plasmids Encoding HA Protein of Eurasian Avian-Like H1N1 Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2019, 52(5): 930-938. |
[4] | ZHAO QingQing, LI JunPing, LIANG LiBin, HUANG ShanYu, ZHOU ChenChen, ZHAO YuHui, WANG Qian, ZHOU Yuan, JIANG Li, CHEN HuaLan, LI ChengJun. Interaction between Influenza Virus PA Protein and Host Protein PCBP1 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396. |
[5] | CHEN Hong, YANG Liu, SONG HaiYan, SHI Ying, MENG LingWei, FU ChunJie, Zhang Dan, ZHAO HaiYuan, LI JinXiang, JIANG XiaoMei, ZHANG TianShu. Domestication of Suspended MDCK Cells and Cultivation of H5 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2018, 51(17): 3405-3414. |
[6] | LI Li, DU XIN, ZHANG LiNa, YANG Liu, GAO XiaoQing, TANG DongXue, ZHAO HaiYuan, JIANG XiaoMei, ZHANG TianShu, LI JinXiang. Optimization of Cultivation Conditions for Reassortant Avian Influenza Virus H7N9 H7-Re1 Strain [J]. Scientia Agricultura Sinica, 2018, 51(17): 3415-3426. |
[7] | LUO Wei-yu, ZHU Peng-yang, ZHANG Jie, HU Yong-hao, KONG Hui-hui, LIANG Li-bin, ZHOU Yuan, LI Cheng-jun, JIANG Li, CHEN Hua-lan. Construction of cDNA Library Derived from Human Lung Epithelial Cell Lines and Screening for Host Cellular Proteins Interacting with Influenza Virus Nucleoprotein [J]. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459. |
[8] | WANG Xiu-rong, CHEN Hua-lan. Guidance: The Impact of Influenza Viruses on Human and Animal Husbandry [J]. Scientia Agricultura Sinica, 2015, 48(15): 3038-3039. |
[9] | ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049. |
[10] | WANG Yun-he, BAO Hong-mei, SUN Jia-shan, LI Yan-bing, XU Xiao-long, WANG Zi-long, SHI Jian-zhong, ZENG Xian-ying, WANG Xiu-rong, CHEN Hua-lan. Development of RT-PCR Technique for Detection of H7N9 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3050-3055. |
[11] | XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan. Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3071-3078. |
[12] | DING Pei-Pei, LIU Yue-Huan, CHEN Ming-Yong, HAN Chun-Hua, LIN Jian, HAN Jing-Wen, PAN Jie. Study on the Susceptibility of Turtledoves to Avian Influenza Virus Subtype H9N2 and its Receptor [J]. Scientia Agricultura Sinica, 2012, 45(12): 2482-2490. |
[13] | CHEN Lu, LIU Shou-Chuan, ZHAO Jun, WANG Chuan-Qing, WANG Ze-Lin. Characteristics of Pathogenic and HA Antigenic Variation of H9N2 Subtybe Avian Influenza Viruses Isolated from 1998 to 2008 in China [J]. Scientia Agricultura Sinica, 2011, 44(24): 5100-5107. |
[14] |
ZHAN Xiao-guo,QIAO Chuan-ling,YANG Huan-liang,CHEN Yan,KONG Wei,XIN Xiao-guang,CHEN Hua-lan . Immunogenicity of a Recombinant Adenovirus Expressing HA Gene of H3N2 Subtype Swine Influenza Virus in Mice#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1235-1241 . |
[15] |
MA Ming,LIU Yue-huan,CHEN Ming-yong,HAN Chun-hua,LIN Jian.
Influenza Virus Receptor Detection on Chicken, Pigeon and Tiger Respiratory and Intestine Tract Epithelium Cells [J]. Scientia Agricultura Sinica, 2009, 42(8): 2958-2965 . |
|