猪流感病毒,类禽型,H1N1,进化分析,分子特征," /> 猪流感病毒,类禽型,H1N1,进化分析,分子特征,"/> swine influenza virus,avian-like,H1N1,phylogenetic analysis,molecular characteristics,"/> Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus

Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (15): 3071-3078.doi: 10.3864/j.issn.0578-1752.2015.15.018

• SPECIAL FOCUS: THE IMPACT OF INFLUENZA VIRUSES ON HUMAN AND ANIMAL HUSBANDRY • Previous Articles     Next Articles

Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus

XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan   

  1. Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Veterinary Biotechnology/Animal Influenza Laboratory of the Ministry of Agriculture, Harbin 150001
  • Received:2014-12-08 Online:2015-08-01 Published:2015-08-01

Abstract: 【Objective】 The objective of this study is to understand the molecular epidemiology of swine influenza virus, to provide scientific references for prevention of animal influenza in China. 【Method】Nasal swab samples collected from pigs were inoculated into SPF chicken embryos for virus isolation. The HA positive samples were further purified and proliferated in SPF chicken embryos. Eight gene fragments of the isolated virus were amplified by RT-PCR and then sequenced by Applied Biosystems 3500xL Genetic Analyzer. Nucleotide homology was analyzed by using DNASTAR. The phylogenetic trees of the genes were constructed using MEGA 6.0. 【Result】 The isolated virus was identified as an H1N1 subtype influenza virus, designated as A/swine/Zhejiang/245/2013(H1N1). Nucleotide homology analysis showed that eight gene fragments of this strain were highly homologous with the respective gene of the viruses recently isolated from China. Phylogenetic analysis revealed that the strain belonged to the avian-like swine H1N1 lineage, no gene reassortment occurred. Amino acid sequence at the HA cleavage site was IPSIQSR↓G, which had characteristics of low-pathogenic influenza viruses. And its receptor-binding sites contained 190D and 225E, which prefer sialic acid (SA)-2,6-Gal-terminated saccharides that are abundant in mammal upper respiratory epithelium. Among the six glycosylation sites, four sites were located in HA1 section and the rest in HA2. The isolates contained 271T, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker which may confer resistance to amantadine and rimantadine antivirals.【Conclusion】The sustained existence and continual mutation of avian-like swine H1N1 influenza virus suggested that intensive swine influenza surveillance should be carried out in the future.

Key words: swine influenza virus')">

[1]    Medina R A, García-Sastre A. Influenza A viruses: new research developments. Nature Reviews Microbiology, 2011, 9(8):590-603.
[2]    Crisci E, Mussá T, Fraile L, Montoya M. Review: influenza virus in pigs. Molecular Immunology, 2013, 55(3/4):200-211.
[3]    Vijaykrishna D, Smith G J, Pybus O G, Zhu H, Bhatt S, Poon L L, Riley S, Bahl J, Ma S K, Cheung C L, Perera R A, Chen H, Shortridge K F, Webby R J, Webster R G, Guan Y, Peiris J S. Long-term evolution and transmission dynamics of swine influenza A virus. Nature, 2011, 473(7348):519-522.
[4]    Yu H, Zhou Y J, Li G X, Zhang G H, Liu H L, Yan L P, Liao M, Tong G Z. Further evidence for infection of pigs with human-like H1N1 influenza viruses in China. Virus Research, 2009, 140(1/2):85-90.
[5]    Chen Y, Zhang J, Qiao C, Yang H, Zhang Y, Xin X, Chen H. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China. Infection Genetics and Evolution, 2013, 13:331-338.
[6]    Yang H, Qiao C, Tang X, Chen Y, Xin X, Chen H. Human infection from avian-like influenza A (H1N1) viruses in pigs, China. Emerging Infectious Diseases, 2012, 18(7):1144-1146.
[7]    Song M S, Lee J H, Pascua P N, Baek Y H, Kwon H I, Park K J, Choi H W, Shin Y K, Song J Y, Kim C J, Choi Y K. Evidence of human-to-swine transmission of the pandemic (H1N1) 2009 influenza virus in South Korea. Journal of Clinical Microbiology, 2010, 48(9):3204-3211.
[8]    Moreno A, Barbieri I, Sozzi E, Luppi A, Lelli D, Lombardi G, Zanoni M G, Cordioli P. Novel swine influenza virus subtype H3N1 in Italy. Veterinary Microbiology, 2009, 138(3/4):361-367.
[9]    Howard W A, Essen S C, Strugnell B W, Russell C, Barass L, Reid S M, Brown I H. Reassortant Pandemic (H1N1) 2009 virus in pigs, United Kingdom. Emerging Infectious Diseases, 2011, 17(6): 1049-1052.
[10]   中华人民共和国国家标准. 猪流感病毒分离与鉴定方法. GB/T 27536-2011.
PRC National Standard. Isolation and Identification of Swine Influenza Virus, GB/T 27536-2011. (in Chinese)
[11]   杨焕良, 乔传玲, 陈艳, 辛晓光, 李一经, 陈化兰. 猪流感病毒H1N1、H1N2和H3N2亚型多重RT-PCR诊断方法的建立. 中国预防兽医学报, 2007, 29(9):714-718.
Yang H L, Qiao C L, Chen Y, Xin X G, Li Y J, Chen H L. Subtyping of H1N1, H1N2 and H3N2 swine influenza viruses by two multiplex RT-PCR. Chinese Journal of Preventive Veterinary Medicine, 2007, 29(9):714-718. (in Chinese)
[12]   Inoue E, Wang X, Osawa Y, Okazaki K. Full genomic amplification and subtyping of influenza A virus using a single set of universal primers. Microbiology and Immunology, 2010, 54(3):129-134.
[13]   Hoffmann E, Stech J, Guan Y, Webster R G, Perez D R. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 2001, 146(12):2275-2289.
[14]   Caton A J, Brownlee G G, Yewdell J W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell, 1982, 31(2 Pt 1):417-427.
[15]   Gamblin S J, Haire L F, Russell R J, Stevens D J, Xiao B, Ha Y, Vasisht N, Steinhauer D A, Daniels R S, Elliot A, Wiley D C, Skehel J J. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science, 2004, 303(5665):1838-1842.
[16]   Glaser L, Stevens J, Zamarin D. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of Virology, 2005, 79(17):11533-11536.
[17]   Tumpey T M, Maines T R, Van Hoeven N, Glaser L, Solórzano A, Pappas C, Cox N J, Swayne D E, Palese P, Katz J M, García-Sastre A. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science, 2007, 315(5812):655-659.
[18]   Steel J, Lowen A C, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathogens, 2009, 5(1):e1000252.
[19]   Subbarao E K, London W, Murphy B R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Journal of Virology, 1993, 67(4):1761-1764.
[20]   Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 2001, 293: 1840-1842.
[21]   Igarashi M, Ito K, Kida H. Genetically destined potential for N-linked glycosylation of influenza virus hemagglutinin. Virology, 2008, 376(2):323-329.
[22]   Schnell J R, Chou J J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178):591-595.
[23]   Brown I H. The epidemiology and evolution of in?uenza viruses in pigs. Veterinary Microbiology, 2000, 74(1/2): 29-46.
[24]   Guan Y, Shortridge K F, Krauss S, Li P H, Kawaoka Y, Webster R G. Emergence of avian H1N1 in?uenza viruses in pigs in China. Journal of Virology, 1996, 70(11):8041-8046.
[25]   Smith G J, Vijaykrishna D, Bahl J, Lycett S J, Worobey M, Pybus O G, Ma S K, Cheung C L, Raghwani J, Bhatt S, Peiris J S, Guan Y, Rambaut A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 2009, 459(7250): 1122-1125.
[26]   Myers K P, Olsen C W, Gray G C. Cases of swine influenza in humans: a review of the literature. Clinical Infectious Diseases, 2007, 44(8):1084-1088.
[27]   Peiris J S, de J, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clinical Microbiology Reviews, 2007, 20(2):243-267.
[1] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[2] JIA YunHui,XU ChengZhi,SUI JinYu,WU YunPu,XU BangFeng,CHEN Yan,YANG HuanLiang,QIAO ChuanLing,CHEN HuaLan. Immunogenicity Evaluation of Eukaryotic Expressing Plasmids Encoding HA Protein of Eurasian Avian-Like H1N1 Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2019, 52(5): 930-938.
[3] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[4] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[5] WANG Ye, HAN Lei, DONG Jie, HUANG JiaXing, WU Jie. Identification and Characteristics of Odorant Receptors in Bumblebee, Bombus lantschouensis [J]. Scientia Agricultura Sinica, 2017, 50(10): 1904-1913.
[6] SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng. Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.
[7] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
[8] ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049.
[9] GE Song, JIANG Wan, HE Sheng-hu, YU Yong-tao, ZHANG Lei-lei, GUO Shu-qiang, WANG Jing. Isolation and Identification of Dermatophytes from Beef Cattle in Ningxia [J]. Scientia Agricultura Sinica, 2015, 48(14): 2876-2883.
[10] GONG Xiao-Dong-1, ZHANG Xiao-Yu-1, TIAN Lan-1, WANG Xing-Yi-1, LI Po-2, ZHANG Pan-1, WANG Yue-1, FAN Yong-Shan-3, HAN Jian-Min-1, GU Shou-Qin-1, DONG Jin-Gao-1. Genome-Wide Identification MAPK Superfamily and Establishment of the Model of MAPK Cascade Pathway in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724.
[11] YAN Wei1, SHEN Zhong-yuan, TANG Xu-dong, XU Li, LI Qian-long, XIAO Sheng-yan, YUE Ya-jie, FU Xu-liang. Sequencing and Phylogenetic Analysis of the RPB1 Gene of Nosema sp. PA [J]. Scientia Agricultura Sinica, 2014, 47(23): 4736-4744.
[12] ZENG Ji-Wu, JIANG Bo, WU Bo, ZHONG Yun, CHENG Chun-Zhen, MU Hong-Na, GAN Lian-Sheng, PENG Cheng-Ji, ZHONG Guang-Yan, YI Gan-Jun. Morphological and Molecular Studies on a Wild Citrus ‘Longmen Xiangcheng’ [J]. Scientia Agricultura Sinica, 2014, 47(2): 334-343.
[13] AN Hai-Shan-1, YANG Ke-Qiang-1, 2 . Sequence Analysis of NBS-Type RGAs and Their Relationship with Anthracnose Resistance in Walnut [J]. Scientia Agricultura Sinica, 2014, 47(2): 344-356.
[14] ZHOU Zhe, ZHANG Cai-Xia, ZHANG Li-Yi, WANG Qiang, LI Wu-Xing, TIAN Yi, CONG Pei-Hua. Bioinformatics and Expression Analysis of the LysM Gene Family in Apple [J]. Scientia Agricultura Sinica, 2014, 47(13): 2602-2612.
[15] CHENG Xiao-Juan-12, YAN Shan-Chun-1, HUANG Yong-Ping-2, TAN An-Jiang-2. Cloning and Functional Analysis of pdp1 in Ostrinia furnacalis (Lepidoptera: Crambidae) [J]. Scientia Agricultura Sinica, 2013, 46(20): 4272-4283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!