Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (12): 2482-2490.doi: 10.3864/j.issn.0578-1752.2012.12.018

• VETERINARY SCIENCE • Previous Articles     Next Articles

Study on the Susceptibility of Turtledoves to Avian Influenza Virus Subtype H9N2 and its Receptor

 DING  Pei-Pei, LIU  Yue-Huan, CHEN  Ming-Yong, HAN  Chun-Hua, LIN  Jian, HAN  Jing-Wen, PAN  Jie   

  1. 1.中国农业大学动物医学院,北京 100193
    2.北京市农林科学院畜牧兽医研究所, 北京 100097
  • Received:2011-11-03 Online:2012-06-15 Published:2012-03-19

Abstract: 【Objective】 The susceptibility of turtledove to H9N2 subtype avian influenza virus and the type and distribution of influenza virus receptors in the respiratory tract epithelium of turtledove were studied. 【Method】 Eight turtledoves and eight SPF chickens were inoculated with A/Chicken/Beijing/2/2009  H9N2 via oculonasal routes at a dose of 5×104EID50 per bird. In addition to observation of clinical signs and gross pathological changes and histopathological changes, the location of the viral antigen and antibody detection were used. Influenza A matrix protein was observed by immunohistochemistry straining. The type of SAα2, 6Gal and SAα2, 3Gal linkage on these animals’ trachea and larynx epithelium cells were detected by digoxigenin-labeled lectin staining. 【Result】 On day 5 post inoculation, no abnomal clinical signs and pathological changes were found in the turtledoves and SPF chickens. The epithelium was found with different degrees of swelling in the turtledove’ larynx , upper trachea, middle trachea and lower trachea. The virus positive particles were detected in turtledoves’ upper trachea, middle trachea , lower trachea and lung epithelium with the method of immunohistochemistry; H9N2 AIV was isolated from turtledoves, and the positive rate of turtledoves’ nasopharyngeal swab was 75% (6/8), that of SPF chickens’ was 100% (8/8). On 14th day post inoculation, HI antibody was detected, and the positive rate of turtledoves’ was 80% (4/5), that of SPF chickens was 100 (5/5). SAα2, 3Gal and SAa2,6Gal were both detected on turtledove’s larynx, upper trachea, middle trachea and lower trachea 【Conclusion】 The turtledoves are susceptible to A/Chicken/Beijing/2/2009, and there are both SAα2, 3Gal binding avian influenza virus and SAα2, 6Gal binding human influenza virus on turtledove’s larynx , upper trachea, middle trachea and lower trachea.

Key words: turtledove, H9N2 Subtype avian influenza virus, influenza virus receptor, susceptibility

[1]Homme P J, Easerday B C. Characteristics of influenza A-turkey- Wisconsin-1966 virus. Avian Disease, 1970, 14:66-74.

[2]Sharp G B, Kawaoka Y, Jones D J, Bean W J, Pryor S P, Hinshaw V, Webster R G. Coinfection of wild ducks by influenza A virus: distribution patterns and biological significance. Journal of Virology, 1997, 71(8):6128- 6135.

[3]Sharp G B, Kawaoka Y, Wright S M, Turner B, Hinshaw V,  Webster R G.. Wild ducks are the reservoir for only a limted numbers of influenza A subtypes. Epidemiology and Infection, 1993, 110:161-176.

[4]Perez D R, Lim W, Seiler J P, Guan Y, Peiris M, Shortridge K F,  Webster R G. Role of quail in interspecies transmission of H9 influenza a viruss : Molecular changes on HA that correspond to adaptation from ducks to chickens. Journal of Virology, 2003, 77(5) :3148-3156.

[5]陈伯伦, 张泽纪, 陈伟斌. 禽流感研究I :鸡A 型禽流感病毒的分离与血清学初步鉴定. 中国兽医杂志, 1994 , 20(10) :3-51.

Chen B L, Zhang Z J, Chen W B. The research of avian influenza virus I: The isolation of A subtype avian influenza viruse and preliminary test of serology. Chinese Journal of Veterinary Medicine, 1994, 20(10): 3-51. (in Chinese)

[6]王友令, 袁小远, 徐怀英, 杨金兴, 秦卓明, 廖 明. 一株商品肉鸡腺胃H9N2的分离鉴定及HA基因序列分析. 华北农学报, 2011, 26(3):37-41. 

Wang Y L, Yuan X Y, Xu H Y, Yang J X, Qin Z M, Liao M. The isolation and identification of H9N2 virus from commercial chicken’s glandular stomach and sequence analysis of HA gene. AcTa  Agricultural Boreali - Sinica, 2011, 26(3):37-41. (in Chinese)

[7]Liu Y H, Zhou J, Yang X Q, Yao W G, Bu W D, Yang B, Song W P, Meng Y N, Lin J, Han C H, Zhu J J, Ma Z J, Zhao J Y, Wang X Q. Susceptibility and transmissibility of pigeons to Asian lineage highly pathogenic avian influenza virus subtype H5N1. Avian Pathology, 2007, 36(6):461-465.

[8]Suzuki Y. Sialobiology of influenza-molecular mechanism of hostrange variation of influenza viruses. Biological and Pharmaceutical Bulletin, 2005, 28(3):399-408.

[9]Matrosovich M N, GambaryanA S, Teneberg S, Piskarev V E, Yamnikova S S, Lvov D K, Robertson J S, Karlsson K A. Avian influenzaA viruses differ from human viruses by  recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology, 1997, 233: 224-234.

[10]Pekosz A, Newby C, Pulkit S, Bose, Andrew Lutz. Sialic acid recognition is a key determinant of influenza A virus tropism in murine trachea epithelial cell cultures. Virology, 2009, 386:61-67.

[11]van Riel D, Munster V J, Wit E de, Rimmelzwaan G F, Fouchier R A M, Osterhaus A D M E,  Human T K. Avian influenza viruses target different cells in the lower respriratory target of humans and other mammals. Immupathology and Infectious Disease, 2007, 171(4): 1215-1223.

[12]James Stevens, Ola Blixt, Terrence M Tumpey, Jeffery K Taubenberger, James C Paulson, Ian A Wilson. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 2006, 312:404-410.

[13]Connor R J, Kawaoka Y, Webster R G, Paulson J C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 1994, 205:17-23.

[14]Hiroshi K, Toshihiro I, Jiro Y, Yukio S, Chitoshi I, Shortridge K F, Kawaoka Y, Webster R G.. Potential for transmission of avian influenza virus to pigs. Journal of Generral Virology, 1994, 75: 2183-2188.

[15]Muranaka M, Yamanaka T, Katayama Y, Hidari K, Kanazawa H, Suzuki T, Oku K, Oyamada T. Distribution of influenza virus sialorecep tors on upper and lower respiratory tract in horses and dogs. Journal of Veterinary Medical Science, 2011, 73(1):125-127.

[16]Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y.  Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology, 1997, 227: 493-499.

[17]Ito T, Couceiro J N, Kelm S, Baum L G, Krauss S, Castrucci M F, Donatelli I, Kida H, Paulson J C, Webster R G, Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of Virology, 1998, 72(9):7367-7373.

[18]Zhang H. Tissue and host tropism of influenza viruses: Importance of quantitative analysis. Science in China Series C: Life Science, 2009, 52(12):1101-1110.

[19]马兴树.禽传染病实验诊断技术. 北京: 化学工业出版社. 2006: 346.

Ma X S. Laboratory Diagnosis Techniques of Poultry Disease. Beijing: Chemical Industry Press, 2006: 346. (in Chinese)

[20]Kaleta E F, Honicke A. Review of the literature on avian influenza A virus in pigeons and experimental studies on the susceptibility of domestic pigeons to influenza A virus of the haemagglutinin subtype H7. Dtsch Tierarztl Wochenschr, 2004, 111(12):467-472.

[21]Suzuki Y, Ito T, Suzuki T, Holland R E, J R, Chambers T M, Kiso M, Ishida H, Kawaoka Y. Sialic acid species as a determinant of the host range of influenza A viruses. Journal of Virology, 2000, 74(24): 11825-11831.

[22]Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, Kawaoka Y. Differences of sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. Journal of Virology, 1997, 71(4) :3357-3362.

[23]Ito T, Suzuki Y, Takada A, Horimoto T, Wells K, Kida H, Otsuki K, Kiso M, Ishida H, Kawaoka Y. Recognition of N-glycolylneuraminic acid linked to galactose by the alpha 2, 3 linkage is associated with intestinal replication of influenza A virus in ducks. Journal of Virology, 2000, 74(19) : 9300-9305.

[24]Couceiro J N, Paulson J C, Beum L G. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium : the role of the host cell in selection of hemagglutinin receptor specificity. Virus Research, 1993(29) :155-165.

[25]Ito T, Couceiro J N S S, Kelm S, Baum L G, Krauss S, Castrucci M R, Donatelli I, Kida H, Paulson J C, Webster R G, Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of Virology, 1998, 72(9): 7367-7373.

[26]马 明, 刘月焕, 陈明勇, 韩春华, 林 健. 鸡、鸽、虎呼吸道和消化道黏膜上皮细胞表面流感病毒受体类型的检测. 中国农业科学, 2009, 42(8): 2958-2965.

Ma M, Liu Y H, Chen M Y, Han C H, Lin J. Influenza virus receptor detection on chicken, pigeon, and tiger respiratory and intestine tract epithelium cells. Scientia Agricultura Sinica, 2009, 42(8): 2958-2965. (in Chinese)

[27]Liu Y H, Han C H, Wang X Q, Lin j, Ma M, Shu Y L, Zhou J, Yang H C, Liang Q, Guo C T, Zhu  J J, Wei H T, Zhao J Y, Ma Z J, Pan J. Influenza a virus receptors in the respiratory and intestinal tracts of pigeons. Avian Pathology, 2009, 38(4) :263-266.
[1] FANG Xiao-min, ZHAO Wei-min, FU Yan-feng, TU Feng, LI Bi-xia, WANG Xue-min, ZHAO Fang, REN Shou-wen. Difference in Susceptibility to Mycoplasma Pneumonia Among Various Pig Breeds and Its Molecular Genetic Basis [J]. Scientia Agricultura Sinica, 2015, 48(14): 2839-2847.
[2] SU Ying-1, RUAN Guo-Rong-2, LONG Yi-1, YANG Bin-1, ZHANG Zhi-Yan-1, DENG Wei-Yun-1, WU Li-Hua-1, 吕Xian-Shan-1 , AI Hua-Shui-1, XIAO Shi-Jun-1, REN Jun-1, HUANG Lu-Sheng-1, DING Neng-Shui-1. Genome-Wide Association Study Reveals Candidate Susceptibility Loci for Pig Scrotal Hernia Using Both F2 Intercross and Outbred Populations [J]. Scientia Agricultura Sinica, 2014, 47(14): 2872-2880.
[3] LI Zheng, XIONG Li, JI Zhi-Yuan, ZOU Li-Fang, ZOU Hua-Song, CHEN Gong-You. Mechanisms of Rice Resistance (Susceptibility) Manipulated by Diverse TALEs of Xanthomonas oryzae pv. oryzae and pv. oryzicola and Potential Utilization in Rice Breeding [J]. Scientia Agricultura Sinica, 2013, 46(14): 2894-2901.
[4] MAO Yong-jiang, CHEN Ren-jin, CHEN Ying, CHANG Ling-ling, SHI Xue-kui,ZHANG Ya-qin, YANG Zhang-ping. Using the MDR Model to Analyze the Relationship of Gene-Gene Interaction Between CXCR1 and IL-8 and the Risk of Mastitis Susceptibility of Chinese Holstein [J]. Scientia Agricultura Sinica, 2011, 44(9): 1908-1915.
[5] XU Cheng-Gang, GUO Li-Li, ZHANG Jian-Min, ZHANG Bin, LI Ang, CHEN Ji-Cheng, LI Jing-Yi, LIAO Ming. Resistance to Antibiotics and Distribution of Tetracycline Resistance Determinants in Haemophilus parasuis from Pigs in South China [J]. Scientia Agricultura Sinica, 2011, 44(22): 4721-4727.
[6] ZHANG Chun-ping,NING Yi-bao,SONG Li
. Resistance to Tetracycline and Distribution of Tetracycline Resistance Determinants in Commensal Escherichia coli Isolated from Clinically Healthy Chickens and Pigs#br# [J]. Scientia Agricultura Sinica, 2010, 43(12): 2578-2583 .
[7] MA Ming,LIU Yue-huan,CHEN Ming-yong,HAN Chun-hua,LIN Jian. Influenza Virus Receptor Detection on Chicken, Pigeon and Tiger Respiratory and Intestine Tract Epithelium Cells
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2958-2965 .
[8] LI Guang-xu,WU Mao-sen,WU Jing,HE Chen-yang. Molecular Identification and Characterization of A Rice Gene of OsBTF3 Encoding A Transcriptional Factor Up-Regulated by Xanthomonas oryzae pv. oryzae#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2608-2614 .
[9] ,,. Protein Expression and Function of the vpr Gene of the vpr Isogenic Knockout E. coli Mutant [J]. Scientia Agricultura Sinica, 2006, 39(01): 176-180 .
[10] ,. Detection of Beta-lactamase and Extended-spectrum Beta-lactamase and Antibiotic Susceptibility Test Analysis of Pathogens Isolated from Pig and Chicken [J]. Scientia Agricultura Sinica, 2005, 38(02): 399-404 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!