Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (17): 3415-3426.doi: 10.3864/j.issn.0578-1752.2018.17.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Optimization of Cultivation Conditions for Reassortant Avian Influenza Virus H7N9 H7-Re1 Strain

LI Li1, DU XIN1, ZHANG LiNa1, YANG Liu1, GAO XiaoQing1, TANG DongXue1, ZHAO HaiYuan1, JIANG XiaoMei2, ZHANG TianShu3, LI JinXiang4   

  1. 1Jilin Guanjie Biotechnology co. LTD, Meihekou 135000, Jilin; 2The Xinjiang Uygur Autonomous Region Academy of Animal Science, Urumqi 830000; 3Animal Health Surveillance Institute of Xinjiang Uygur Autonomous Region, Urumqi 830000; 4 Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2017-04-18 Online:2018-09-01 Published:2018-09-01

Abstract: 【Background】Outbreaks of highly pathogenic avian influenza outbreak caused huge economic loss and damage the environment health, current vaccination remains one of the main measures to control avian influenza in China, which requires a lot of safety, high efficiency and low cost of the avian influenza vaccine. Due to the limitations of raw material sources, complex process, individual differences, long cultivation period and difficulty in amplifying culture, the process of preparing avian influenza vaccine by chicken embryo method is deficient. However, it is gradually becoming a trend to use bioreactor to produce virus vaccine on a large scale.It can not only increase the output of units, but also achieve high density cell and high virus yield, and ensure the quality of products. Currently, Chinas vaccine for the prevention and control of avian influenza is the reassortant avian influenza virus (H5+H7) divalent inactivated vaccine (H5N1 Re-8 strain +H7N9 H7-Re1 strain). The production capacity of the single tank of avian influenza inactivated vaccine is the maximum of 6 000 L.The supply of high viral antigen is one of the main factors influencing the production of high efficiency vaccine.【Objective】In order to provide stable and efficient production antigens, a kind of domestication tests were carried out. 【Method】The reassortant avian influenza virus H7N9 H7-Re1 was proliferated on MDCK cells and suspended MDCK cells. Virus titers were tested by comparing different harvest times, viral inoculation doses and concentrations of TPCK on MDCK cells which the reassortant avian influenza virus H7N9 H7-Re1 strain were cultured in. The best harvest time was determined, 64 hours, dosage 0.008% or the MOI 10-4 and TPCK-trypsin concentration 2 μg·ml-1. According to the determined optimal culture conditions, the virus titer of each generation was tested. 【Result】The results showed that when virus were extended up to the fifth generation, HA reached 1:256 and the content of every 1 ml virus reached 108.5 TCID50, and the content of every 0.1 ml virus reached 108.5 EID50. Therefore, it can be determined that the 5th generation virus is the best generation for producing virus. 【Conclusion】The reassortant avian influenza virus was optimized and tested on the suspension MDCK cells. The best harvest time of the H7N9 H7-Re1 strain on suspension MDCK cells was 48 h, MOI 10-4, and the best TPCK-trypsin concentration was 4-8 μg·ml-1. In the actual production, MDCK cells or suspended MDCK cells can be selected to expand the virus.

Key words: reassortant avian influenza virus, MDCK cell, suspended MDCK cells, virus titer

[1]    HINSHAW V G, WEBSTER R G. . The perpetuation of orthomyxoviruses and paramyxo-viruses in Canadian waterfowl. Canadian Journal of Microbiology, 1980, 26(5): 622-629.
[2]    朱建国, 陆苹. 禽流感病毒核蛋白研究进展. 中国预防兽医学报, 2003, 25(1): 12-15.
ZHU J G, LU P. Progress of research on avian influenza virus nuclear protein. Chinese Journal of Preventive Veterinary Medicine, 2003, 25(1): 12-15. (in Chinese)
[3]    甘孟侯, 郑世军. 我国H5N1高致病性禽流感防控的回顾和策略//中国畜牧兽医学会动物传染病分会第六届全国会员代表大会第12次学术研讨会论文集, 2007: 1-5.
GAN M H, ZHENG S J. Review and strategy of the prevention and control of H5N1 highly pathogenic avian influenza in China//The 12th Academic Symposium of the Sixth National Assembly of Members, the Society of Animal Infectious Diseases, 2007: 1-5. (in Chinese)
[4]   王念晨, 曲楠楠, 欧阳国文, 赵冰兵, 陈祖贤, 张友, 王文清, 吴斯宇, 廖明, 焦培荣. 当前我国H5亚型高致病性禽流感流行情况分析. 中国动物传染病学报, 2016, 24(4): 77-81.
WANG N C, QU N N, OUANG G W, ZHAO B B, CHEN Z X, ZHANG Y, WANG W Q, WU S Y, LIAO M, JIAO P R. The current situation of H5 subtype highly pathogenic avian influenza in China. Chinese Journal of Animal Infectious Diseases, 2016, 24(4): 77-81. (in Chinese)
[5]    于康震, 陈化兰. 禽流感. 中国农业出版社, 2015.
YU K Z, CHEN H L. Avian Influenza. China Agriculture Press, 2015. (in Chinese)
[6]    NISHINO H, MURAKOSHI M, TOKUDA H, SATOMI Y. Cancer prevention by carotenoids. Archives of Biochemistry and Biophysics, 2009, 483(2): 165-168.
[7]    TREE J A, RICHARDSON C, FOOKS A R, CLEGG J C, LOOBY D. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine, 2001, 19: 3444-3450.
[8]    王立强, 许龙, 周晓巍, 杨志新, 陆健昇, 刘冰, 夏炳辉, 杨津, 黄培堂. 应用HA、NA、M1和M2蛋白制备H5N1高致病性禽流感病毒样颗粒. 生物技术通讯, 2011, 22(6): 759-763.
WANG L Q, XU L, ZHOU X W, YANG Z X, LU J S, LIU B, XIA B H, YANG J, HUANG P T. Highly pathogenic H5N1 avian influenza virus-like particles comprised of the HA, NA, M1 and M2 proteins. Biological Technology Communication, 2011, 22(6): 759-763. (in Chinese)
[9]    RODGERS S E, BARTON E S, OBERHAUS S M, PIKE B, GIBSON C A, TYLER K L, DERMODEY T S. Reovirus-induced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bcl-2. Journal of virology, 1997, 71(3): 2540-2546.
[10]   MOCHIZUKI M. Growth characteristics of canine pathogenic viruses in MDCK cells cultured in RPMI1640 medium without animal protein. Vaccine, 2006, 24(11): 1744-1748.
[11]   MOCHIZUKI M, HASHIMOTO T. Growth of feline pankenkopenia virus and canine parvovirus in vitro. Nihon Juigaku Zasshi the Japanese Journal of Veterinary Science, 1996, 48(4): 841-844.
[12]   SUBBARAO K, KLIMOV A, KATZ J, REGNERY H, LIM W, HALF H, PERDUE M, SWAYNE D, BENDER C, HUNG J, HEMPHILL M, ROWE T, SHAW M, XU X, FUKUDA, K, COX N. Characterization of an avian influenza A(H5N1) virus isolated from a child with a fatal respiratory illness. Science, 1998, 279(5349): 393-396.
[13]   TREE J A, RICHARDSON C, FOOKS A R, CLEGG J C, LOOBY D . Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine, 2001, 19(25): 3444-3450.
[14]   陶源, 胡又佳, 朱宝泉. 基于哺乳动物细胞培养的流感疫苗生产. 综述评论, 2011, 32(9): 539-541.
TAO Y, HU Y J, ZHU B Q. Progress in production of influenza vaccine by mammalian cells. World Clinical Drugs, 2011, 32(9): 539-542. (in Chinese)
[15]   Schild G C, Oxford J S, De Webster R G. Evidence for host cell selection of Influenza virus antigenic variants. Nature, 1983, 303(5919): 706-709.
[16]   张俊君, 张燕丽, 秦龙, 魏战峰. 利用狗肾传代细胞分离流感病毒及分离条件的研究. 实用医学杂志, 2014, 30(5): 687-690.
ZHANG J J, ZHANG Y L, QIN L, WEI Z F. Study on isolate influenza viruses from MDCK cell. The Journal of Practical Medicine, 2014, 30(5): 687-690. (in Chinese)
[17]   张韧, 王建超, 陈文庆, 刘华杰, 高飞, 徐舸辰, 林龙飞. 反应器细胞悬浮培养和微载体培养技术在动物疫苗生产中的应用. 中国兽药杂质, 2012, 46(11): 39-43.
ZHANG R, WANG J C, CHEN W Q, LIU H J, GAO F, XU G C, LIN L F. The application of cell suspension culture and microcarrier culture in animal vaccine production. Chinese Journal of Veterinary Drug, 2012, 46(11): 39-43. (in Chinese)
[18]   杨艳坤, 郭雯雯, 隋勇, 白仲虎. 规模化哺乳细胞培养技术生产病毒疫苗--过程工程和生物反应器. 生物产业技术, 2015(1): 7-16.
YANG Y K, GUO W W, SUI Y, BAI Z H. Mass culture of mammalian cells to produce virus vaccine-process engineering and bioreactors. Biotechnology & Business, 2015(1): 7-16. (in Chinese)
[19]   YOUIL R, SU Q, TONER T J, SZYMKOWIAK C, KWAN W S, RUBIN B, PETRUKHIN L, KISELEVA I, SHAW A R, DISTEFANO D. Comparative study of influenza virus replication in Vero and MDCK cell Lines. Journal of Virological Methods, 2004, 120(1): 23-31.
[20]   DOROSHENKO A, HALPERIN S A. Trivalent MDCK cell culture derived influenza vaccine Optaflu (Novartis Vaccines). Expert Review of Vaccines, 2014, 8(6): 679-688.
[21]   HU A Y, TSENG Y F, WENG T C, LIAO C C, WU J, CHOU A H, CHAO H J, GU A, CHEN J, LIN S C, HSIAO C H, WU S C, CHONG P. Production of inactivated influenza H5N1 vaccines from MDCK cells in serum free medium. PLoS One, 2011, 6(1): e14578.
[22]   MADIN S H, DARBY J. Established kidney cell lines of normal adult bovine and ovine origin. Proceedings of the Society for Experimental Biology and Medicine, 1958 98(3): 574-576 .
[23]   RINDLER M J, CHUMAN L M, SHAFFER L, JR SAIER M H. Retention of differentiated properties in an established dog kidney epithelial celline (MDCK). Journal of Cell Biology, 1979, 81: 635-648.
[24]   HALPERIN S A , SMITH B , MABROUK T, GERMAIN M, TRÉPANIER P, HASSELL T, TREANOR J, GAUTHIER R, MILLS E L. Safety and immunogenicity of a trivalent, in activated, mammalian cell culture derived influenza vaccine in healthy adults, seniors, and children. Vaccine, 2002 , 20(7/8): 1240-1247.
[25]   冯磊, 吴培培, 褚轩, 王伟峰, 陈丽, 侯继波. MDCK单细胞悬浮生长的驯化筛选及其在AIV增殖上的初步应用. 浙江农业学报, 2015, 27(6): 913-920.
FENG L, WU P P, CHU X, WANG W F, CHEN L, HOU J B. Adaptation and screening of MDCK cells in sing-cell suspension growth mode for AIV replication. Zhejiang Journal of Agricultural Sciences, 2015, 27(6): 913-920. (in Chinese)
[26]   BARMAN S, NAYAK D P. Lipid raft disruption by cholesteral depletion enhances influenza Avius budding form MDCK cells. Journal of Virology, 2007, 8(22): 12169-12178.
[27]   杨涛, 刘明, 张云, 刘春国, 王洪峰, 蔡雪辉. 重组H5N3禽流感疫苗株在MDCK细胞中大规模增殖条件研究. 中国预防兽医学报, 2007, 29(3): 199-203.
YANG T, LIU M, ZHANG Y, LIU C G, WANG H F, CAI X H. Multiplication of the recombinant H5N3 influenza vaccine candidate strain in large-scale MDCK cell culture systems. Chinese Journal of Preventive Veterinary Medicine, 2007, 29(3): 199-203. (in Chinese)
[28]   冯婷, 殷仲伟, 李晋蓉, 范营营, 涂文伟, 李虹. 流感病毒H1N1在MDCK细胞的培养及纯化条件的优化. 中国病原生物学杂志, 2012, 7(7): 493-496.
FENG T, YIN Z, LI J R, FAN Y Y, TU W W, LI H. Optimization of culture condition for cultivation of influenza virus H1N1 on MDCK cell and purification. Journal of Pathogen Biology, 2012, 7(7): 493-496. (in Chinese)
[29]   吴培培, 唐应华, 褚轩, 王伟峰, 陈丽, 侯继波, 冯磊. 适应H9亚型禽流感病毒增殖的MDCK悬浮细胞株的驯化及其生物学特性. 江苏农业学报, 2016, 32(6): 1377-1383.
WU P P, TANG Y H, CHU X, WANG W F, CHEN L, HOU J B, FENG L. Domestication of MDCK suspension cell lines for the H9 subtype of avian influenza virus proliferation and its biological characteristics evaluation. Jiangsu Journal of Agricultural Sciences, 2016, 32(6): 1377-1383. (in Chinese)
[30]   李春艳, 肖晶, 李曦, 刘娣. 微载体规模化培养MDCK细胞增殖H9N2亚型禽流感病賴研究. 中国人兽共患病学报, 2009, 25(12): 1149-1153.
LI C Y, XIAO J, LI X, LIU D. Research on multiplication of the H9N2 subtype avian influenza virus in large-scale microcarrier-based MDCK cell culture system. Chinese Journal of Zoonoses, 2009, 25(12): 1149-1153. (in Chinese)
[1] CHEN Hong, YANG Liu, SONG HaiYan, SHI Ying, MENG LingWei, FU ChunJie, Zhang Dan, ZHAO HaiYuan, LI JinXiang, JIANG XiaoMei, ZHANG TianShu. Domestication of Suspended MDCK Cells and Cultivation of H5 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2018, 51(17): 3405-3414.
[2] ZHENG Ming-Xue, GU Shao-Peng, WANG Li-Xia, HAN Ke-Guang, LI Bao-Jun. Effect on E. tenella Invasion into Host Cells in Vitro by Inhibiting Calcium Signal Transduction [J]. Scientia Agricultura Sinica, 2011, 44(15): 3272-3278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!