Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 2067-2076.doi: 10.3864/j.issn.0578-1752.2022.10.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Mechanism of NMRAL1 Regulating Influenza Virus Replication

YAN Ya(),WANG GuangWen,KONG FanDi,WANG XuYuan,WANG YiHan,LI JunPing,ZHAO YuHui,LI ChengJun,CHEN HuaLan,JIANG Li()   

  1. State Key Laboratory Veterinary Biotechology/Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
  • Received:2021-03-09 Accepted:2021-05-14 Online:2022-05-16 Published:2022-06-02
  • Contact: Li JIANG E-mail:yanhs2019@163.com;jiangli@caas.cn

Abstract:

【Objective】Influenza virus is a zoonotic pathogen that often causes a pandemic and poses a great threat to human health, and the influenza viruses are prone to variants and can constantly escape the host cell immune response and develop resistance to existing anti-influenza drugs, so the search for new ways to fight influenza is imminent. This study aimed to explore the effect of NMRAL1 (NmrA-like family domain-containing protein 1) on influenza virus replication, and to reveal the molecular mechanism by which it functioned, so as to provide a potential target for anti-influenza drugs development. 【Method】In this study, siRNA interference technology was used to down regulate the expression of NMRAL1 in A549 cells, and the expression levels of NMRAL1 were detected by Western Blot. Virus titers in cell supernatants at 24 h and 48 h after infection with two different subtypes influenza viruses, including a/Anhui/ 2/2005(AH05)(H5N1) and a/WSN/33(H1N1), were detected using the plaque assay. To determine the specific stage at which NMRAL1 affected influenza virus replication, NMRAL1 was overexpressed by transiently transfecting NMRAL1-Myc-pCAGGS plasmid in HEK293T cells, and the effect of overexpressing NMRAL1 on influenza virus polymerase activity was examined by luciferase reporter system. The influenza virus NP protein was stained by using immunofluorescence, and the down-regulated expression of NMRAL1 on the localization of NP protein at 3, 4, 5, 6 and 8 h post infection was assessed respectively by confocal assay to determine whether down-regulated expression of NMRAL1 affected the process of influenza virus vRNP import and export. Western Blot was used to detect the effect of NMRAL1 knockdown on the expression of viral proteins and on the expression of IFN stimulated genes (ISGs) downstream of type I interferon pathway activated by influenza virus. Indirect immunofluorescence assay was utilized to further verify the effect of NMRAL1 on influenza virus replication. 【Result】Western Blot assay showed that NMRAL1 siRNA could significantly down regulate NMRAL1 expression in A549 cells. With the down-regulated expression of NMRAL1, A549 cells were infected with H5N1 and H1N1 viruses, respectively. Then the virus titers in the cell supernatant were measured by plaque assay, which showed that the virus titers in the supernatant of cells at 24 and 48 h after infection with H5N1 or H1N1 were significantly decreased, meaning that NMRAL1 could promote the replication of different subtypes influenza viruses. To further explore the specific mechanism by which NMRAL1 regulated influenza virus replication, a luciferase reporter system was used to detect influenza virus polymerase activity, and it was found that the overexpression of NMRAL1 had no effect on influenza virus polymerase activity. The results of confocal assay showed that the down-regulated expression of NMRAL1 did not affect the process of NP nuclear import and export, meanwhile Western Blot assay indicated that down-regulated expression of NMRAL1 did not affect the expression of each viral protein. However, the results of the fluorescence quantitative PCR assay showed that down-regulated expression of NMRAL1 was able to promote the up-regulation of IFN-β mRNA levels induced by influenza virus infection, and Western Blot assay found that down expression of NMRAL1 promoted the expression of MxA and IFITM3 antiviral proteins downstream of type I interferon pathway. Meanwhile, the indirect immunofluorescence assay showed that the down expression of NMRAL1 could significantly inhibit influenza virus replication. 【Conclusion】 Those results demonstrated that, during influenza virus infection, NMRAL1 did not affect the process of influenza virus invasion as well as transcription translation, but rather inhibited the expression of antiviral factors, such as MxA and IFITM3, by inhibiting type I interferon pathway activation, which ultimately promoted influenza virus replication. This study confirmed that the host factor NMRAL1 positively regulated influenza virus replication and enriched the network of host factors involved in influenza virus replication.

Key words: NMRAL1, influenza virus, virus replication, interferon β, antiviral gene

Table 1

Primers and siRNA sequences"

引物Primers/siRNA 序列Sequence (5'-3')
NMRAL1-Myc F CCGGAATTCATGGTGGACAAGAAACTGGTGGTGG
NMRAL1-Myc R CTAGCTAGCCAGCAGGTTGAAGTCCCCTTTGTG
NMRAL1 RT F ACGCCACCTTCATCGTGAC
NMRAL1 RT R AACGCCAATGTCCCGGAAAT
IFN-β RT F TCTGGCACAACAGGTAGTAGGC
IFN-β RT R GAGAAGCACAACAGGAGAGCAA
GAPDH RT F GGAGCGAGATCCCTCCAAAAT
GAPDH RT R GGCTGTTGTCATACTTCTCATGG
NMRAL1 siRNA CCUUCAUCGUGACCAAUUAtt
Scrambled siRNA UUCUUCGAACGUGUCACGTtt

Fig. 1

Effect of NMRAL1 knockdown on influenza virus replication titer in A549 cells A: siRNA knockdown effect of NMRAL1 in A549 cells detected by Western Blot; B: Effect of NMRAL1 knockdown on H5N1 influenza virus replication titer in A549 cells; C: Effect of NMRAL1 knockdown on H1N1 influenza virus replication titer in A549 cells"

Fig. 2

Effect of up-regulated NMRAL1 expression on influenza virus polymerase activity in HEK293T cells"

Fig. 3

Effect of NMRAL1 knockdown on the NP nuclear import and export in A549 cells(Bars: 50 μm)"

Fig. 4

Effect of NMRAL1 knockdown on the expression of viral proteins in A549 cells"

Fig. 5

Effect of NMRAL1 knockdown on the IFN-β expression during influenza virus infection in A549 cells"

Fig. 6

Effect of NMRAL1 knockdown on influenza virus replication in A549 cells A: Effect of NMRAL1 knockdown on anti-viral protein expression during influenza virus infection in A549 cells B: Effect of NMRAL1 knockdown on influenza virus infection ratio in A549 cells (Bars: 400 μm)"

[1] 司振书, 王守山, 胡冬民. 禽流感病毒基因组及其编码蛋白的结构与功能. 广东农业科学, 2012, 39(1): 126-129. doi: 10.16768/j.issn.1004-874x.2012.01.003.
doi: 10.16768/j.issn.1004-874x.2012.01.003
SI Z S, WANG S S, HU D M. Structure and function of genome and its encoding protein of avian influenza virus. Guangdong Agricultural Sciences, 2012, 39(1): 126-129. doi: 10.16768/j.issn.1004-874x.2012.01.003. (in Chinese)
doi: 10.16768/j.issn.1004-874x.2012.01.003
[2] 罗维玉, 朱鹏阳, 张杰, 胡永浩, 孔晖晖, 梁立滨, 周圆, 李呈军, 姜丽, 陈化兰. 人源肺细胞cDNA文库构建及与流感病毒NP互作宿主蛋白的筛选. 中国农业科学, 2016, 49(22): 4451-4459. doi: 10.3864/j.issn.0578-1752.2016.22.017.
doi: 10.3864/j.issn.0578-1752.2016.22.017
LUO W Y, ZHU P Y, ZHANG J, HU Y H, KONG H H, LIANG L B, ZHOU Y, LI C J, JIANG L, CHEN H L. Construction of cDNA library derived from human lung epithelial cell lines and screening for host cellular proteins interacting with influenza virus nucleoprotein. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459. doi: 10.3864/j.issn.0578-1752.2016.22.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.22.017
[3] KOSIK I, YEWDELL J W. Influenza hemagglutinin and neuraminidase: Yin⁻Yang proteins coevolving to thwart immunity. Viruses, 2019, 11(4): 346. doi: 10.3390/v11040346.
doi: 10.3390/v11040346
[4] WU Y, WU Y, TEFSEN B, SHI Y, GAO G F. Bat-derived influenza-like viruses H17N10 and H18N11. Trends in Microbiology, 2014, 22(4): 183-191. doi: 10.1016/j.tim.2014.01.010.
doi: 10.1016/j.tim.2014.01.010
[5] WU N C, WILSON I A. Influenza hemagglutinin structures and antibody recognition. Cold Spring Harbor Perspectives in Medicine, 2020, 10(8): a038778. doi: 10.1101/cshperspect.a038778.
doi: 10.1101/cshperspect.a038778
[6] EDINGER T O, POHL M O, STERTZ S. Entry of influenza A virus: Host factors and antiviral targets. The Journal of General Virology, 2014, 95(Pt 2): 263-277. doi: 10.1099/vir.0.059477-0.
doi: 10.1099/vir.0.059477-0
[7] 赵青青, 李俊平, 梁立滨, 黄山雨, 周陈陈, 赵玉辉, 王倩, 周圆, 姜丽, 陈化兰, 李呈军. 流感病毒PA蛋白与宿主蛋白PCBP1的相互作用. 中国农业科学, 2018, 51(17): 3389-3396. doi: 10.3864/j.issn.0578-1752.2018.17.013.
doi: 10.3864/j.issn.0578-1752.2018.17.013
ZHAO Q Q, LI J P, LIANG L B, HUANG S Y, ZHOU C C, ZHAO Y H, WANG Q, ZHOU Y, JIANG L, CHEN H L, LI C J. Interaction between influenza virus PA protein and host protein PCBP1. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396. doi: 10.3864/j.issn.0578-1752.2018.17.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.17.013
[8] GAN Q N, LI T T, HU B, LIAN M, ZHENG X F. HSCARG inhibits activation of NF-kappaB by interacting with IkappaB kinase-beta. Journal of Cell Science, 2009, 122(Pt 22): 4081-4088. doi: 10.1242/jcs.054007.
doi: 10.1242/jcs.054007
[9] WU Y H, CHIU D T Y, LIN H R, TANG H Y, CHENG M L, HO H Y. Glucose-6-phosphate dehydrogenase enhances antiviral response through downregulation of NADPH sensor HSCARG and upregulation of NF-κB signaling. Viruses, 2015, 7(12): 6689-6706. doi: 10.3390/v7122966.
doi: 10.3390/v7122966
[10] ZHANG M, HU B, LI T T, PENG Y Y, GUAN J H, LAI S S, ZHENG X F. A CRM1-dependent nuclear export signal controls nucleocytoplasmic translocation of HSCARG, which regulates NF-κB activity. Traffic, 2012, 13(6): 790-799. doi: 10.1111/j.1600-0854.2012.01346.x.
doi: 10.1111/j.1600-0854.2012.01346.x.
[11] ZANG W C, ZHENG X F. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radical Biology and Medicine, 2020, 160: 768-774. doi: 10.1016/j.freeradbiomed.2020.09.016.
doi: 10.1016/j.freeradbiomed.2020.09.016
[12] LEVY D E, GARCı́A-SASTRE A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine & Growth Factor Reviews, 2001, 12(2/3): 143-156. doi: 10.1016/S1359-6101(00)00027-7.
doi: 10.1016/S1359-6101(00)00027-7
[13] PENG Y Y, XU R D, ZHENG X F. HSCARG negatively regulates the cellular antiviral RIG-I like receptor signaling pathway by inhibiting TRAF3 ubiquitination via recruiting OTUB1. PLoS Pathogens, 2014, 10(4): e1004041. doi: 10.1371/journal.ppat.1004041.
doi: 10.1371/journal.ppat.1004041
[14] LI S, ZHENG H, MAO A P, ZHONG B, LI Y, LIU Y, GAO Y, RAN Y, PO T E, SHU H B. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. Journal of Biological Chemistry, 2010, 285(7): 4291-4297. doi: 10.1074/jbc.M109.074971.
doi: 10.1074/jbc.M109.074971
[15] GIBBERT K, SCHLAAK J, YANG D, DITTMER U. IFN-α subtypes: Distinct biological activities in anti-viral therapy. British Journal of Pharmacology, 2013, 168(5): 1048-1058. doi: 10.1111/bph.12010.
doi: 10.1111/bph.12010
[16] FAN W H, JIAO P T, ZHANG H, CHEN T, ZHOU X T, QI Y, SUN L, SHANG Y L, ZHU H F, HU R L, LIU W J, LI J. Inhibition of African swine fever virus replication by porcine type I and type II interferons. Frontiers in Microbiology, 2020, 11: 1203. doi: 10.3389/fmicb.2020.01203.
doi: 10.3389/fmicb.2020.01203
[17] LEE S, ISHITSUKA A, NOGUCHI M, HIROHAMA M, FUJIYASU Y, PETRIC P P, SCHWEMMLE M, STAEHELI P, NAGATA K, KAWAGUCHI A. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Science Immunology, 2019, 4(40): eaau4643. doi: 10.1126/sciimmunol.aau4643.
doi: 10.1126/sciimmunol.aau4643
[18] XIAO H, KILLIP M J, STAEHELI P, RANDALL R E, JACKSON D. The human interferon-induced MxA protein inhibits early stages of influenza A virus infection by retaining the incoming viral genome in the cytoplasm. Journal of Virology, 2013, 87(23): 13053-13058. doi: 10.1128/JVI.02220-13.
doi: 10.1128/JVI.02220-13
[19] HALLER O, STAEHELI P, SCHWEMMLE M, KOCHS G. Mx GTPases: Dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 2015, 23(3): 154-163. doi: 10.1016/j.tim.2014.12.003.
doi: 10.1016/j.tim.2014.12.003
[20] HALLER O, KOCHS G. Mx genes: Host determinants controlling influenza virus infection and trans-species transmission. Human Genetics, 2020, 139(6/7): 695-705. doi: 10.1007/s00439-019-02092-8.
doi: 10.1007/s00439-019-02092-8
[21] DESAI T M, MARIN M, CHIN C R, SAVIDIS G, BRASS A L, MELIKYAN G B. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathogens, 2014, 10(4): e1004048. doi: 10.1371/journal.ppat.1004048.
doi: 10.1371/journal.ppat.1004048
[22] MEINEKE R, RIMMELZWAAN G F, ELBAHESH H. Influenza virus infections and cellular kinases. Viruses, 2019, 11(2): 171. doi: 10.3390/v11020171.
doi: 10.3390/v11020171
[23] HAN J, PEREZ J T, CHEN C, LI Y, BENITEZ A, KANDASAMY M, LEE Y, ANDRADE J, TENOEVER B, MANICASSAMY B. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Reports, 2018, 23(2): 596-607. doi: 10.1016/j.celrep.2018.03.045.
doi: 10.1016/j.celrep.2018.03.045
[24] WANG G W, JIANG L, WANG J L, ZHANG J, KONG F D, LI Q B, YAN Y, HUANG S Y, ZHAO Y H, LIANG L B, LI J P, SUN N, HU Y Z, SHI W J, DENG G H, CHEN P C, LIU L L, ZENG X Y, TIAN G B, BU Z G, CHEN H L, LI C J. The G protein-coupled receptor FFAR2 promotes internalization during influenza A virus entry. Journal of Virology, 2020, 94(2): e01707-e01719. doi: 10.1128/JVI.01707-19.
doi: 10.1128/JVI.01707-19
[25] LUO W Y, ZHANG J, LIANG L B, WANG G W, LI Q B, ZHU P Y, ZHOU Y, LI J P, ZHAO Y H, SUN N, HUANG S Y, ZHOU C C, CHANG Y, CUI P F, CHEN P C, JIANG Y P, DENG G H, BU Z G, LI C J, JIANG L, CHEN H L. Phospholipid scramblase1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathogens, 2018, 14(1): e1006851. doi: 10.1371/journal.ppat.1006851.
doi: 10.1371/journal.ppat.1006851
[26] QIAO Y K, YAN Y, TAN K S, TAN S S L, SEET J E, ARUMUGAM T V, CHOW V T K, DE YUN WANG, TRAN T. CD151, a novel host factor of nuclear export signaling in influenza virus infection. Journal of Allergy and Clinical Immunology, 2018, 141(5): 1799-1817. doi: 10.1016/j.jaci.2017.11.032.
doi: 10.1016/j.jaci.2017.11.032
[27] FELGENHAUER U, SCHOEN A, GAD H H, HARTMANN R, SCHAUBMAR A R, FAILING K, DROSTEN C, WEBER F. Inhibition of SARS-CoV-2 by type I and type III interferons. The Journal of Biological Chemistry, 2020, 295(41): 13958-13964. doi: 10.1074/jbc.AC120.013788.
doi: 10.1074/jbc.AC120.013788
[28] COCCIA E M. IFN regulation and functions in myeloid dendritic cells. Cytokine & Growth Factor Reviews, 2008, 19(1): 21-32. doi: 10.1016/j.cytogfr.2007.10.005.
doi: 10.1016/j.cytogfr.2007.10.005
[29] YAMAGAMI M, OTSUKA M, KISHIKAWA T, SEKIBA K, SEIMIYA T, TANAKA E, SUZUKI T, ISHIBASHI R, OHNO M, KOIKE K. ISGF3 with reduced phosphorylation is associated with constitutive expression of interferon-induced genes in aging cells. Npj Aging and Mechanisms of Disease, 2018, 4: 11. doi: 10.1038/s41514-018-0030-6.
doi: 10.1038/s41514-018-0030-6
[30] CHEN X Y, LIU S S, GORAYA M U, MAAROUF M, HUANG S L, CHEN J L. Host immune response to influenza A virus infection. Frontiers in Immunology, 2018, 9: 320. doi: 10.3389/fimmu.2018.00320.
doi: 10.3389/fimmu.2018.00320
[31] HOLZINGER D, JORNS C, STERTZ S, BOISSON-DUPUIS S, THIMME R, WEIDMANN M, CASANOVA J L, HALLER O, KOCHS G. Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. Journal of Virology, 2007, 81(14): 7776-7785. doi: 10.1128/JVI.00546-06.
doi: 10.1128/JVI.00546-06
[32] LI T, GUAN J, LI S, ZHANG X, ZHENG X. HSCARG downregulates NF-κB signaling by interacting with USP7 and inhibiting NEMO ubiquitination. Cell Death & Disease, 2014, 5(5): e1229. doi: 10.1038/cddis.2014.197.
doi: 10.1038/cddis.2014.197
[33] LIAN M, ZHENG X F. HSCARG regulates NF-kappaB activation by promoting the ubiquitination of RelA or COMMD1. The Journal of Biological Chemistry, 2009, 284(27): 17998-18006. doi: 10.1074/jbc.M809752200.
doi: 10.1074/jbc.M809752200
[1] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[2] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[3] JIA YunHui,XU ChengZhi,SUI JinYu,WU YunPu,XU BangFeng,CHEN Yan,YANG HuanLiang,QIAO ChuanLing,CHEN HuaLan. Immunogenicity Evaluation of Eukaryotic Expressing Plasmids Encoding HA Protein of Eurasian Avian-Like H1N1 Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2019, 52(5): 930-938.
[4] ZHAO QingQing, LI JunPing, LIANG LiBin, HUANG ShanYu, ZHOU ChenChen, ZHAO YuHui, WANG Qian, ZHOU Yuan, JIANG Li, CHEN HuaLan, LI ChengJun. Interaction between Influenza Virus PA Protein and Host Protein PCBP1 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396.
[5] CHEN Hong, YANG Liu, SONG HaiYan, SHI Ying, MENG LingWei, FU ChunJie, Zhang Dan, ZHAO HaiYuan, LI JinXiang, JIANG XiaoMei, ZHANG TianShu. Domestication of Suspended MDCK Cells and Cultivation of H5 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2018, 51(17): 3405-3414.
[6] LI Li, DU XIN, ZHANG LiNa, YANG Liu, GAO XiaoQing, TANG DongXue, ZHAO HaiYuan, JIANG XiaoMei, ZHANG TianShu, LI JinXiang. Optimization of Cultivation Conditions for Reassortant Avian Influenza Virus H7N9 H7-Re1 Strain [J]. Scientia Agricultura Sinica, 2018, 51(17): 3415-3426.
[7] LUO Wei-yu, ZHU Peng-yang, ZHANG Jie, HU Yong-hao, KONG Hui-hui, LIANG Li-bin, ZHOU Yuan, LI Cheng-jun, JIANG Li, CHEN Hua-lan. Construction of cDNA Library Derived from Human Lung Epithelial Cell Lines and Screening for Host Cellular Proteins Interacting with Influenza Virus Nucleoprotein [J]. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459.
[8] WANG Xiu-rong, CHEN Hua-lan. Guidance: The Impact of Influenza Viruses on Human and Animal Husbandry [J]. Scientia Agricultura Sinica, 2015, 48(15): 3038-3039.
[9] ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049.
[10] WANG Yun-he, BAO Hong-mei, SUN Jia-shan, LI Yan-bing, XU Xiao-long, WANG Zi-long, SHI Jian-zhong, ZENG Xian-ying, WANG Xiu-rong, CHEN Hua-lan. Development of RT-PCR Technique for Detection of H7N9 Subtype Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3050-3055.
[11] XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan. Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3071-3078.
[12] DING Pei-Pei, LIU Yue-Huan, CHEN Ming-Yong, HAN Chun-Hua, LIN Jian, HAN Jing-Wen, PAN Jie. Study on the Susceptibility of Turtledoves to Avian Influenza Virus Subtype H9N2 and its Receptor [J]. Scientia Agricultura Sinica, 2012, 45(12): 2482-2490.
[13] CHEN Lu, LIU Shou-Chuan, ZHAO Jun, WANG Chuan-Qing, WANG Ze-Lin. Characteristics of Pathogenic and HA Antigenic Variation of H9N2 Subtybe Avian Influenza Viruses Isolated from 1998 to 2008 in China [J]. Scientia Agricultura Sinica, 2011, 44(24): 5100-5107.
[14] ZHAN Xiao-guo,QIAO Chuan-ling,YANG Huan-liang,CHEN Yan,KONG Wei,XIN Xiao-guang,CHEN Hua-lan
. Immunogenicity of a Recombinant Adenovirus Expressing HA Gene of H3N2 Subtype Swine Influenza Virus in Mice#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1235-1241 .
[15] MA Ming,LIU Yue-huan,CHEN Ming-yong,HAN Chun-hua,LIN Jian. Influenza Virus Receptor Detection on Chicken, Pigeon and Tiger Respiratory and Intestine Tract Epithelium Cells
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2958-2965 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!