Scientia Agricultura Sinica

Previous Articles    

Analysis of Cross Compatibility Variation among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies

JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang   

  1. Henan Sesame Research Center, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Specific Oilseed Crops Genomics/Shennong Laboratory, Zhengzhou 450002
  • Published:2022-09-13

Abstract: 【ObjectiveThe research aims to explore the cross compatibility between different Sesamum species and analyze the biological characteristics of interspecies hybrid progeny so as to supply the foundation for efficient application of wild sesame species. MethodA sesame cultivar Yuzhi 11 (S. indicum, 2n=26) and 4 wild Sesamum species including S. latifolium (2n=32), S. calycinum (2n=32), S. angustifolium (2n=32), and S. radiatum (2n=64) were applied to construct interspecies cross combinations using diallel hybridization method by artificial pollination in the field. Embryo rescue method was also used to obtain interspecific hybrid F1Interspecific hybrid compatibility was compared based on hybrid capsule formation rate. Botanical characters of hybrids were observed during flowering and mature stages. Pollen fertility was assessed using Alexander staining method. Chromosome number and karyotype characteristics of root somatic cells of hybrids were observed using smear chromosome preparation technique. Specific and polymorphic SSR primers in Sesamum were used to analyze the molecular difference in interspecific hybrids.【Result Twenty positive and reciprocal cross combinations were constructed for the 5 Sesamum species. A total of 2019 flowers were pollinated and 370 hybrid capsules were harvested. As to the female parents with more chromosomes, hybrid capsules were more easily obtained. The cross compatibility among the 5 Sesamum species significantly varied from 1.18% (S. radiatum×S. calycinum) to 63.33% (S. calycinum×S. angustifolium). F1 plants of 9 combinations produced hybrid seeds, while the ratio of pollen sterility of F1 progeny ranged from 35.21%-100.00%. The cross S. calycinum×S. angustifolium presented the highest sterility ratio to 87.68%. Hybrid progeny exhibited the obvious heterosis over parents in plant height, plant type, and some key agronomic traits. As to the positive and reciprocal hybrid F1 derived from sesame cultivar and the wild species, leaf shape, flower shape, and flower color showed partial characters of both parents. The cross compatibility between sesame cultivar (n=13) and the 3 Sesamum species with chromosome group n=16 ranked as S. angustifolium>S. calycinum>S. latifolium. The cross compatibility between wild species S. radiatum (n=32) and the 3 species with n=16 ranked as S. calycinum>S. angustifolium>S. latifoliumAmong the 5 Sesamum species, the genetic relationship between S. calycinum and S. angustifolium is relatively closest. The chromosome number of root tip cells of some hybrid plants is consistent with the theoretical value calculated from the parents. Screening results of the 3 pairs of polymorphic SSR primers indicated that 99.66% of obtained F1 plants are true hybrid. Chromosome karyotype and SSR marker screening results reflected the genetic difference and characters of Sesamum species. 【ConclusionAmong the 5 Sesamum species, the cross compatibility varies significantly and the heterosis of interspecific hybrid is obvious. Of which only S. calycinum and S. angustifolium have the relatively closest genetic relationship and could be directly applied for elite germplasm creation and interspecific hybrid breeding in Sesamum. Reproductive isolation barriers exist in other cross combinations. Some techniques including embryo rescue and molecular marker application should be used to achieve the utilization of wild Sesamum species for sesame breeding.


Key words: sesame, wild Sesamum species, interspecific hybridization, botanic character, molecular assessment

[1] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[2] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[3] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[4] BI QiuYan,DANG ZhiHong,ZHU WeiQi,GAO ZhanLin,HAN XiuYing,ZHAO JianJiang,WANG WenQiao,LU Fen,WU Jie. Identification of Major Pathogenic Fungi of Soybean in Hebei Province and Screening of Control Fungicides [J]. Scientia Agricultura Sinica, 2021, 54(1): 71-85.
[5] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[6] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[7] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[8] LiSong SHI,Yuan GAO,DongHua LI,WenJuan YANG,Rong ZHOU,XiuRong ZHANG,YanXin ZHANG. Study on the Method for Identification Sesame Capsule Dehiscence Resistance and Evaluation of Capsule Dehiscence Resistance of the Core Collection [J]. Scientia Agricultura Sinica, 2019, 52(20): 3520-3532.
[9] ZHOU Rong,LIU Pan,LI DongHua,ZHANG YanXin,WANG LinHai,ZHANG XiuRong,WEI Xin. Cloning and Functional Characterization of Sesame SiSAD Gene [J]. Scientia Agricultura Sinica, 2019, 52(10): 1678-1685.
[10] HAN YaFei, WANG XueDe, ZHENG YongZhan, MEI HongXian, WEI AnChi, LIU YanYang. Study on Changes of Sesame Protein Content and Its Components of Yuzhi 11 Sesame Seed During Growth Period [J]. Scientia Agricultura Sinica, 2018, 51(4): 652-661.
[11] ZHEN HaoYang, PENG Huan, KONG LingAn, HONG BaoYuan, ZHU GuiLan, WANG RuiHui, PENG DeLiang, WEN YanHua. Heterodera sojae, a New Cyst Nematode Record in China and Its Parasitism to Legume Crops [J]. Scientia Agricultura Sinica, 2018, 51(15): 2913-2924.
[12] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[13] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[14] XIE LiXue, ZHANG XiaoYan, ZHENG Shan, ZHANG LiJie, LI Tao. Molecular identification and specific detection of Telosma mosaic virus infecting passion fruit [J]. Scientia Agricultura Sinica, 2017, 50(24): 4725-4734.
[15] ZHAO YunLei, WANG HongMei, CHEN Wei, GONG HaiYan, SANG XiaoHui, CUI YanLi, ZHAO Pei. Elite Alleles-Based Molecular Detection for Verticillium Wilt Resistance in Cotton [J]. Scientia Agricultura Sinica, 2017, 50(2): 216-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!