Scientia Agricultura Sinica

Previous Articles    

Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition

XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui   

  1. China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 311400
  • Online:2022-07-27 Published:2022-07-27

Abstract: 【Objective】This study was conducted to research the effect of rhizosphere oxygen environment on the phosphorus uptake of rice seedlings and its physiological mechanisms, so as to provide a theoretical basis for the new cultivation measures to promote the absorption and utilization of phosphorus uptake of rice.【Method】Two varieties, Zhenshan 97B and Miyang 46, were cultured in nutrient solution with different oxygen content (DOC) levels (medium oxygen: DOC 2.5-3.5 mg·L-1, high oxygen: DOC>6.0 mg·L-1, continuous bubbling with atmospheric air, and normal conditions as CK) controlled by on-line dissolved oxygen meter. After different oxygen treatments, the rice seedling growth (biomass, root morphological structure), root physiology (root activity, phosphorus absorption kinetics, phosphatase activity, root secretion of organic acids, citric acid, etc.), and phosphorus absorption and accumulation were measured and analyzed.【Result】 (1) The medium oxygen treatment significantly promoted the occurrence and growth of tillers, and increased the biomass, root shoot ratio, phosphorus content and accumulation of the two tested varieties; the high oxygen treatment reduced the plant height and shoot biomass, but had no significant effect on root biomass. (2) Compared with the control, the total root length, surface area and total volume of root were significantly increased, and the average root diameter were significantly decreased after the medium oxygen treatment, while the high oxygen treatment was opposite to the medium. The medium and high oxygen treatment could promote the secretion of organic acids (the total amount of organic acids, oxalic acid, tartaric acid, and citric acid content increased), and increase the activity of acid phosphatase in leaves and roots. However, compared with high oxygen, the medium oxygen treatment significantly enhanced the activity of roots, optimized the kinetic parameters of phosphorus absorption, increased Imax, and decreased Km and Cmin. (3) The results of correlation analysis showed that the phosphorus accumulation and aboveground phosphorus content were significantly positively correlated with root morphology (total root length, root surface area, average diameter and total volume of root), root activity, absorption kinetic parameters Imax, the content of oxalic acid and tartaric acid, and negatively correlated with phosphorus absorption kinetic parameters Km and Cmin. The root phosphorus content of root was significantly positively correlated with root acid phosphatase, root activity, total organic acid and oxalic acid content, but not significantly with other indexes.【Conclusion】The moderate increase of dissolved oxygen concentration (medium oxygen treatment) could improve the activity of acid phosphatase in leaves and roots, root activity, the root secretion content of oxalic acid, tartaric acid and citric acid, optimize the root morphological structure (increase the root surface area) and phosphorus uptake kinetics of rice seedlings so as to increase phosphorus content and accumulation of rice. Therefore, the selecting appropriate cultivation measures could change the rhizosphere oxygen environment and improve the ability of phosphorus absorption of rice in field planting.

Key words: rice, rhizosphere oxygen environment, phosphorus, root morphology and physiology, phosphorus absorption kinetics

[1] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[2] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[3] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[4] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[5] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[6] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[7] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[8] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[9] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[10] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[11] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[12] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[13] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[14] SHENG QianNan, YU XiaoHong, ZHOU Xiong, TIAN GuiSheng, WU HaiYa, GENG GuoTao, YAN JinYao, LI Jing, REN Tao, LU JianWei. Response of Biomass and Nutrient Competition Between Oilseed Rape and Weed to the Rate of N, P and K Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(3): 481-489.
[15] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!