Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 4026-4038.doi: 10.3864/j.issn.0578-1752.2025.19.017

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Screening of Feed Oat Varieties and Its Evaluation of Silage Quality in Central Inner Mongolia

REN JiaHui1,2(), SUN JuanJuan1,2(), HAO YingLu1,2, WANG FengWu3, WANG JingYu4, ZHANG MingWei4, LI BaoHan4, ZHENG ChengZhong3, HE ZhuQing3, WANG ZhaoLan1,2   

  1. 1 Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010
    2 Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot 010111
    3 Ulanqab Institute of Agriculture and Forestry Sciences, Ulanqab 012000, Inner Mongolia
    4 Xing'an League Institute of Agriculture and Animal Husbandry, Xing'an League 137400, Inner Mongolia
  • Received:2025-03-28 Accepted:2025-07-17 Online:2025-10-01 Published:2025-10-10
  • Contact: SUN JuanJuan

Abstract:

【Objective】With the continuous advancement of grass animal husbandry, there is a shortage of high-quality feed oat varieties in central Inner Mongolia, especially the lack of silage feed oat germplasm resources. Through the analysis of nutritional components and silage quality of different oat varieties, the high quality oat and silage oat varieties suitable for planting in this area were selected.【Method】In this study, 9 feed oat varieties, including Mengsi Yan No. 2, Dictator, Madison, Fuxing, Haymaker, Caesar, Tianyan No. 1, Waterfall, and Molasses, were screened. They were planted in the experimental base of the agro-pastoral ecotone of the Grassland Research Institute of the Chinese Academy of Agricultural Sciences. The yield was measured by mowing at the milk maturity stage, filling the polyethylene feed bag with silage and vacuum sealing it, storing it at room temperature for 120 days. The nutrient composition of feed oat silage before and after silage, the fermentation quality of silage and the number of microorganisms were analyzed.【Result】There were significant differences in yield, nutritional value and silage fermentation quality among different varieties of feed oats in central Inner Mongolia (P<0.05). The yield of fresh grass in the nine feed oat varieties was 40.20-59.54 t•hm-2, and the yield of fresh grass in Mengsi Yan No. 2 was the highest (59.54 t•hm-2), while the dry matter content of the raw materials of the nine feed oat varieties was 31.53%-41.32%, and the Fuxing (13.75%) with the highest crude protein content was 95.31% higher than that of Madison (7.04%). The content of soluble carbohydrates was low, and the highest was Molasses (4.83%). The content of neutral detergent fiber in Caesar and Fuxing was significantly lower than that of other varieties (P<0.05), and the highest content of acid detergent fiber in Dictator was 37.07%, which was significantly different from other varieties (P<0.01). After 120 days of silage, there was still a significant difference in nutrient composition between varieties (P<0.05). The dry matter content of Caesar was the highest, and the crude protein content of Fuxing was 11.98%, which was significantly higher than that of other varieties (P<0.05). The content of soluble carbohydrates in Madison was the highest, and the neutral and acidic detergent fibers of Fuxing were the lowest, which were significantly lower than those of other varieties (P<0.05). The crude ash fraction of Fuxing was 7.81%, which was significantly higher than that of other varieties (P<0.05). There were also significant differences in the fermentation quality of different varieties, with Fuxing having the lowest pH, the highest lactic acid content, no butyric acid detected, the lowest ammonia nitrogen content, and a higher number of lactic acid bacteria. According to the evaluation system of Kaiser, the Fuxing grade was 1, and the fermentation quality was the best, while the fermentation quality of other varieties was poor. The results of redundancy analysis showed that the nutritional quality of raw materials jointly explained 80.01% of the variation of silage fermentation quality. Among them, the contribution rate of crude protein was the highest, while there was a significant difference between acid detergent fiber and silage quality (P<0.01). The results of Pearson correlation showed that the nutritional quality of raw materials significantly affected the fermentation quality of silage, and crude protein, neutral and acidic detergent fiber and crude ash were the main factors affecting the fermentation quality.【Conclusion】Considering the yield, nutritional quality and fermentation quality, Fuxing could be used as a spring-sown silage feed oat variety in central Inner Mongolia.

Key words: feed oats, variety, silage, nutritional quality, fermentation quality

Table 1

Sources of test materials"

品种名称 Breed name 品种来源 Breed source 原产地 Origin
蒙饲燕2号 Mengsi Yan No. 2 中国农业科学院草原研究所 Institute of Grassland, Chinese Academy of Agricultural Sciences 中国 China
禾王 Dictator 百绿国际(天津)草业有限公司 Bailv International (Tianjin) Grass Industry Co., Ltd 美国America
麦迪逊 Madison 百绿国际(天津)草业有限公司 Bailv International (Tianjin) Grass Industry Co., Ltd 加拿大 Canada
福星 Fuxing 北京正道种业有限公司 Beijing Zhengdao Seed Industry Co., Ltd 美国 America
黑玫克 Haymaker 北京正道种业有限公司 Beijing Zhengdao Seed Industry Co., Ltd 加拿大 Canada
凯撒 Caesar 北京百斯特草业有限公司 Beijing Best Grass Industry Co., Ltd 美国 America
甜燕1号 Tianyan No. 1 北京佰青源畜牧业科技发展有限公司
Beijing Baiqingyuan Animal Husbandry Science and Technology Development Co., Ltd
加拿大 Canada
大瀑布 Waterfall 克劳沃(北京)生态科技有限公司 Crowwer (Beijing) Ecological Technology Co., Ltd 加拿大 Canada
牧乐思 Molasses 克劳沃(北京)生态科技有限公司 Crowwer (Beijing) Ecological Technology Co., Ltd 加拿大 Canada

Table 2

Silage fermentation quality evaluation system of Kaiser"

丁酸
Butyric acid(%DM)
得分
Bonus point
乙酸
Acetic acid(%DM)
去分
Subtract point
总分
Total score
级别
Level
0—0.3 100 ≤3.0 0 90—100 1
0.3—0.4 90 3.0—3.5 -10 72—89 2
0.4—0.7 80 3.5—4.5 -20 52—71 3
0.7—1.0 70 4.5—5.5 -30 30—51 4
1.0—1.3 60 5.5—6.5 -40 <30 5
1.3—1.6 50 6.5—7.5 -50
1.6—1.9 40 7.5—8.5 -60
1.9—2.6 30 >8.5 -70
2.6—3.6 20
3.6—5.0 10
>5.0

Table 3

Comparison of yield of different feed oat varieties"

品种 Variety 鲜草产量 Fresh yield (t•hm-2) 干草产量 Hay yield (t•hm-2) 株高 Plant height (cm)
蒙饲燕2号Mengsi Yan No. 2 59.54±8.19a 13.26±1.35ab 120.50±0.89b
禾王Dictator 41.46±3.82ab 9.54±0.94abc 100.70±1.77e
麦迪逊Madison 53.80±11.26ab 14.34±1.74a 127.20±2.86a
福星Fuxing 45.46±0.35ab 9.78±0.03abc 96.70±1.92e
黑玫克Haymaker 47.86±0.57ab 10.46±0.0.63abc 108.00±2.49d
凯撒Caesar 35.82±5.47b 7.34±0.75c 115.80±1.58bc
甜燕1号Tianyan No. 1 49.66±3.26ab 11.46±1.07abc 121.00±2.20b
大瀑布Waterfall 40.20±9.00ab 8.54±1.57bc 112.30±1.87cd
牧乐思Molasses 56.20±9.72ab 13.00±2.96ab 97.50±1.01e

Table 4

Comparison of nutritional quality of different varieties of feed oat raw materials"

品种
Variety
干物质
Dry matter (%FW)
粗蛋白
Crude protein (%DM)
可溶性碳水化合物
Water soluble
carbohydrates (%DM)
中性洗涤纤维
Neutral detergent
Fibers (%DM)
酸性洗涤纤维
Acidic detergent
Fiber s(%DM)
粗灰分
Ash
(%DM)
蒙饲燕2号Mengsi Yan No. 2 33.82±0.24de 9.14±0.20bc 3.99±0.56ab 59.10±0.10a 28.23±0.15bc 6.25±0.29cd
禾王Dictator 37.58±0.28bc 13.04±0.64a 1.63±0.05d 51.83±1.48c 37.07±1.78a 7.43±0.24b
麦迪逊Madison 34.02±0.14de 7.04±0.19d 4.52±0.08ab 56.94±0.78b 29.24±0.57b 7.24±0.20b
福星Fuxing 31.53±0.49f 13.75±0.75a 2.64±0.43cd 48.90±0.61d 23.97±0.70e 8.50±0.23a
黑玫克Haymaker 32.42±0.79ef 10.06±0.18b 3.85±0.39ab 56.09±0.19b 27.45±0.25bcd 7.31±0.34b
凯撒Caesar 41.32±1.08a 9.11±0.16bc 2.22±0.24d 48.48±0.73d 24.30±0.16e 6.23±0.39cd
甜燕1号Tianyan No. 1 36.37±0.79bc 9.24±0.35bc 4.25±0.42ab 53.16±0.54c 26.70±0.57cd 6.21±0.52cd
大瀑布Waterfall 34.72±0.25cd 8.05±0.44cd 3.56±0.43bc 56.24±0.20b 29.51±0.24b 6.53±0.20bc
牧乐思Molasses 38.42±0.44b 8.46±0.21c 4.83±0.46a 55.79±0.49b 25.52±0.27de 5.51±0.18d

Table 5

Comparison of nutritional quality of feed oat silage of different varieties"

品种
Variety
干物质
Dry matter
(%FW)
粗蛋白
Crude protein
(%DM)
可溶性碳水化合物
Water soluble
carbohydrates (%DM)
中性洗涤纤维
Neutral detergent
fibers (%DM)
酸性洗涤纤维
Acidic detergent
fibers (%DM)
粗灰分
Ash
(%DM)
蒙饲燕2号Mengsi Yan No. 2 30.24±0.95d 8.78±0.24cd 1.81±0.13b 48.02±1.88ab 22.22±1.04abc 5.98±0.07c
禾王Dictator 34.82±0.58abc 10.27±1.19b 1.44±0.22bc 47.34±1.24ab 22.91±1.29abc 7.30±1.01ab
麦迪逊Madison 34.46±1.46abc 7.08±0.42e 3.57±0.23a 51.55±1.28a 25.42±1.15a 6.40±0.33bc
福星Fuxing 29.70±0.37d 11.98±0.39a 1.03±0.08c 41.33±1.91b 18.47±1.07c 7.81±0.15a
黑玫克Haymaker 33.28±0.46bcd 10.02±0.12bc 2.05±0.11b 52.80±0.96a 24.07±0.90ab 5.44±0.16c
凯撒Caesar 37.14±1.12a 9.12±0.14bcd 1.81±0.40b 45.71±4.98ab 21.98±2.62abc 5.88±0.36c
甜燕1号Tianyan No. 1 31.19±0.69cd 8.65±0.23cd 1.81±0.13b 50.76±3.37a 24.21±1.96ab 6.02±0.17c
大瀑布Waterfall 31.90±1.53bcd 7.91±0.27de 2.98±0.19a 47.38±2.35ab 22.96±1.40abc 5.82±0.11c
牧乐思Molasses 35.09±2.06ab 7.94±0.36de 3.09±0.24a 50.07±2.14a 22.94±1.56abc 5.29±0.45c

Table 6

Comparison of fermentation quality of feed oat silage of different varieties"

品种
Variety
pH 乳酸
Lactic acid
(%DM)
乙酸
Acetic acid
(%DM)
丙酸
Propionic acid(%DM)
丁酸
Butyric acid (%DM)
氨态氮/总氮
NH3-N/TN
(%)
蒙饲燕2号Mengsi Yan No. 2 4.52±0.11bc 1.96±0.35bc 0.07±0.01b 1.57±0.09de 2.19±0.15a 6.66±0.80abc
禾王Dictator 4.77±0.06ab 1.47±0.41bcd 0.04±0.01bc 1.63±0.10de 1.30±0.44ab 5.89±0.52bc
麦迪逊Madison 4.61±0.08b 1.00±0.19d 0.03±0.01c 1.23±0.09e 1.83±0.17ab 7.97±0.12a
福星Fuxing 4.33±0.08c 5.28±0.27a 0.18±0.01a 1.94±0.07bcde 4.98±0.21c
黑玫克Haymaker 4.59±0.03b 2.23±0.14bc 0.07±0.00b 1.71±0.11cde 1.64±0.04ab 5.09±0.12c
凯撒Caesar 4.57±0.11b 2.30±0.35b 0.06±0.01b 2.60±0.16ab 1.06±0.08b 5.24±0.33bc
甜燕1号Tianyan No. 1 4.69±0.06ab 1.82±0.14bcd 0.06±0.00bc 1.70±0.11cde 2.10±0.38a 6.91±0.51ab
大瀑布Waterfall 4.68±0.04ab 1.35±0.16cd 0.05±0.01bc 2.04±0.12bcd 2.20±0.23a 8.30±0.88a
牧乐思Molasses 4.75±0.06ab 1.77±0.26bcd 0.05±0.01bc 2.77±0.46a 2.08±0.53a 6.85±0.76ab

Table 7

Kaiser evaluation system of fermentation quality of feed oat silage of different varieties"

品种
Variety
丁酸
Butyric acid (%DM)
得分
Bonus point
乙酸
Acetic acid (%DM)
去分
Subtract points
总分
Total score
级别
Level
蒙饲燕2号Mengsi Yan No. 2 2.19 30 0.07 0 30 4
禾王Dictator 1.30 60 0.04 0 60 3
麦迪逊Madison 1.83 40 0.03 0 40 4
福星Fuxing 0.00 100 0.18 0 100 1
黑玫克Haymaker 1.64 40 0.07 0 40 4
凯撒Caesar 1.06 60 0.06 0 60 3
甜燕1号Tianyan No. 1 2.10 30 0.06 0 30 4
大瀑布Waterfall 2.20 30 0.05 0 30 4
牧乐思Molasses 2.08 30 0.05 0 30 4

Table 8

Comparison of microbial counts of feed oat varieties after silage"

品种
Variety
乳酸菌
Lactic acid bacteria (lg cfu•g-1)
大肠杆菌
Colibacillus (lg cfu.g-1)
霉菌与酵母菌
Mold and Yeast (lg cfu.g-1)
蒙饲燕2号Mengsi Yan No. 2 3.83±0.98bc 0.78±0.78ab 2.12±0.91c
禾王Dictator 5.90±0.27a 0.18±0.18b 6.12±0.15a
麦迪逊Madison 3.60±0.70bc 2.32±1.34ab 2.20±0.50c
福星Fuxing 5.63±0.20a 1.01±1.06ab 4.16±0.85abc
黑玫克Haymaker 5.91±0.18a 2.52±0.95ab 5.73±0.09a
凯撒Caesar 5.57±0.17a 2.85±1.00bc
甜燕1号Tianyan No. 1 5.79±0.22a 0.60±0.60b 4.52±0.69abc
大瀑布Waterfall 4.49±0.81ab 1.30±1.30ab 2.59±0.68bc
牧乐思Molasses 2.64±0.42c 1.88±1.00ab 2.87±1.01bc

Fig. 1

Redundancy analysis of nutritional quality and fermentation quality of feed oats Adjusted R2=0.586,P=0.024. V1: Mengsi Yan No. 2; V2: Dictator; V3: Madison; V4: Fuxing; V5: Haymaker; V6: Caesar; V7: Tianyan No. 1; V8: Waterfall; V9: Molasses; DM: Dry matter; CP: Crude protein; WSC: Water soluble carbohydrates; NDF: Neutral detergent fiber; ADF: Acid Detergent Fiber; ASH: Crude ash; LA: Lactic acid; AA: Acetic acid; PA: Propionic acid; BA: Butyric acid; NH3-N/TN: Ammonia nitrogen/Total nitrogen. The same as below"

Fig. 2

Pearson correlation analysis between the nutritional quality of feed oat raw materials and the fermentation quality of silage *P<0.05,**P<0.01,***P<0.001"

[1]
杨海鹏, 孙泽民. 中国燕麦. 北京: 农业出版社, 1989.
YANG H P, SUN Z M. Chinese Oats. Beijing: Agriculture Press, 1989. (in Chinese)
[2]
赵桂琴, 慕平, 魏黎明. 饲用燕麦研究进展. 草业学报, 2007, 16(4): 116-125.
ZHAO G Q, MU P, WEI L M. Research progress in Avena sativa. Acta Prataculturae Sinica, 2007, 16(4): 116-125. (in Chinese)
[3]
祁学东. 高寒牧区燕麦营养价值及其评价. 畜牧兽医杂志, 2012, 31(4): 100-101.
QI X D. Nutritional value and evaluation of oats in alpine pastoral areas. Journal of Animal Science and Veterinary Medicine, 2012, 31(4): 100-101. (in Chinese)
[4]
肖燕子, 徐丽君, 辛晓平, 乌仁其其格, 孙林, 姜超. 呼伦贝尔地区不同燕麦品种的营养价值及发酵品质评价研究. 草业学报, 2020, 29(12): 171-179.

doi: 10.11686/cyxb2020138
XIAO Y Z, XU L J, XIN X P, WU R, SUN L, JIANG C. Nutritional value and fermentation quality of different oat varieties in the Hulunbuir area. Acta Prataculturae Sinica, 2020, 29(12): 171-179. (in Chinese)
[5]
琚泽亮, 赵桂琴, 柴继宽, 贾志峰, 梁国玲. 不同燕麦品种在甘肃中部的营养价值及青贮发酵品质综合评价. 草业学报, 2019, 28(9): 77-86.

doi: 10.11686/cyxb2018542
JU Z L, ZHAO G Q, CHAI J K, JIA Z F, LIANG G L. Comprehensive evaluation of nutritional value and silage fermentation quality of different oat varieties in central Gansu Province. Acta Prataculturae Sinica, 2019, 28(9): 77-86. (in Chinese)
[6]
KAPLAN M, AKCURA M, KARDES Y M, BUYUKILIC BEYZI S, CIFTCI B, KOKTEN K. Evaluation of silage quality characteristics and nutritive value of oat genotypes. Euphytica, 2024, 220(12): 178.
[7]
王昊然, 高凤芹, 薛艳林, 蒋恒, 娜娜, 王娇, 孙乐. 不同乳酸菌添加剂对燕麦青贮品质和微生物多样性的影响. 中国草地学报, 2024, 46(11): 82-90.
WANG H R, GAO F Q, XUE Y L, JIANG H, NA N, WANG J, SUN L. Effects of different lactic acid bacteria additives on the quality and microbial diversity of oat silage. Chinese Journal of Grassland, 2024, 46(11): 82-90. (in Chinese)
[8]
ZHU X M, JIANG D D, YUAN B J, NI K K. Effect of low- temperature-tolerant lactic acid bacteria on the fermentation quality and bacterial community of oat silage at 5 ℃ vs. 15 ℃. Fermentation, 2022, 8(4): 158.
[9]
贾婷婷, 徐梓萌, 王铁梅. 萎蔫和添加剂处理对燕麦青贮品质和蛋白质组分的影响. 动物营养学报, 2024, 36(11): 7371-7382.

doi: 10.12418/CJAN2024.627
JIA T T, XU Z M, WANG T M. Effects of wilting and additive treatment on quality and protein fractions of Avena sativa silage. Chinese Journal of Animal Nutrition, 2024, 36(11): 7371-7382. (in Chinese)
[10]
申瑶. 柠条与燕麦草混合青贮对青贮品质及瘤胃发酵性能的影响[D]. 北京: 中国农业科学院, 2024.
SHEN Y. Effect of mixed silage of caragana and oat grass on silage quality and rumen fermentation performance[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese)
[11]
JIA T T, YU Z. Effect of temperature and fermentation time on fermentation characteristics and biogenic amine formation of oat silage. Fermentation, 2022, 8(8): 352.
[12]
YIN X J, ZHAO J, WANG S R, DONG Z H, LI J F, SHAO T. Separating the chemical and microbial factors of oat harvested at two growth stages to determine the main factor on silage fermentation. Journal of Applied Microbiology, 2022, 132(6): 4266-4276.

doi: 10.1111/jam.15566 pmid: 35384180
[13]
DENG X C, JIA Y S, GE G T, WANG Z J, LIU M J, BAO J, ZHAO M, SI Q, LIU Y C, ZHAO W X. Microbiomics and volatile metabolomics-based investigation of changes in quality and flavor of oat (Avena sativa L.) silage at different stages. Frontiers in Plant Science, 2023, 14: 1278715.
[14]
包文龙, 任家辉, 张腾薇, 赵金梅, 王照兰, 王凤梧, 唐加高, 殷国梅, 韩云鹏, 孙娟娟. 12个饲用燕麦品种在乌兰察布生产力的综合评价. 草地学报, 2024, 32(4): 1169-1176.

doi: 10.11733/j.issn.1007-0435.2024.04.020
BAO W L, REN J H, ZHANG T W, ZHAO J M, WANG Z L, WANG F W, TANG J G, YIN G M, HAN Y P, SUN J J. Comprehensive evaluation of productivity of 12 forage oat varieties in Ulanqab. Acta Agrestia Sinica, 2024, 32(4): 1169-1176. (in Chinese)
[15]
张丽英. 饲料分析及饲料质量检测技术. 4版. 北京: 中国农业大学出版社, 2016.
ZHANG L Y. Feed Analysis and Quality Test Technology. 4th ed. Beijing: China Agricultural University Press, 2016. (in Chinese)
[16]
宁开桂. 实用饲料分析手册. 北京: 中国农业科学技术出版社, 1993.
NING K G. Handbook of Practical Feed Analysis. Beijing: China Agricultural Science and Technology Press, 1993. (in Chinese)
[17]
孙娟娟, 阿拉木斯, 白春生. 青贮饲料质量检测实用手册. 北京: 中国农业科学技术出版社, 2017.
SUN J J, ALAMUSI, BAI C S. Practical Handbook of Silage Quality Inspection. Beijing: China Agricultural Science and Technology Press, 2017. (in Chinese)
[18]
BRODERICK G A, KANG J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro Media. Journal of Dairy Science, 1980, 63(1): 64-75.
[19]
KAISER E. A new system for the evalution of the fermentation quality of silages. Proceedings of the XIV international silage conference, a satellite workshop of the XXth international grassland congress, Bellast, Northern Ireland, 2005.
[20]
吴璞, 王虎成, 沈禹颖. 水分含量对红豆草青贮发酵品质的影响. 草业科学, 2024, 41(3): 770-778.
WU P, WANG H C, SHEN Y Y. Effect of water content of sainfoin on its silage fermentation quality. Pratacultural Science, 2024, 41(3): 770-778. (in Chinese)
[21]
饶正华. 饲料微生物学检测技术. 北京: 中国农业出版社, 2006.
RAO Z H. Microbial Feed Science Detection Technology. Beijing: China Agriculture Press, 2006. (in Chinese)
[22]
孙建平, 董宽虎, 蒯晓妍, 薛竹慧, 高永强. 晋北农牧交错区引进燕麦品种生产性能及饲用价值比较. 草业学报, 2017, 26(11): 222-230.

doi: 10.11686/cyxb2017021
SUN J P, DONG K H, KUAI X Y, XUE Z H, GAO Y Q. Comparison of productivity and feeding value of introduced oat varieties in the agro-pasture ecotone of northern Shanxi. Acta Prataculturae Sinica, 2017, 26(11): 222-230. (in Chinese)
[23]
董志晓, 苟文龙, 刘英杰, 刘柏杨, 牟海鹏, 谭小平, 刘伟, 雷雄, 马啸. 15份饲用燕麦品种在凉山地区的生产性能和营养价值评价. 草业科学, 2024, 41(11): 2651-2663.
DONG Z X, GOU W L, LIU Y J, LIU B Y, MOU H P, TAN X P, LIU W, LEI X, MA X. Evaluation of production performance and nutritional value of 15 feed barley varieties in the Liangshan Region. Pratacultural Science, 2024, 41(11): 2651-2663. (in Chinese)
[24]
EMRAN S A, KRUPNIK T J, KUMAR V, ALI M Y, PITTELKOW C M. Agronomic, economic, and environmental performance of nitrogen rates and source in Bangladesh’s coastal rice agroecosystems. Field Crops Research, 2019, 241: 107567.
[25]
景芳, 刘彦明, 陈富, 边芳, 南铭, 任生兰. 饲用燕麦在甘肃不同种植区的生产性能及营养品质. 草原与草坪: 1-14. https://link.cnki.net/urlid/62.1156.s.20241010.1610.004.
JING F, LIU Y M, CHEN F, BIAN F, NAN M, REN S L. Production performance and nutritional quality of feed oats in different planting areas of Gansu Province. Prairie & Lawn: 1-14. https://link.cnki.net/urlid/62.1156.s.20241010.1610.004. in Chinese)
[26]
王春梅. 河西走廊主要栽培牧草的品质对肉牛和绵羊营养物质利用效率的影响[D]. 兰州: 兰州大学, 2020.
WANG C M. Responses in nutrient utilisation efficiencies of cattle and sheep to the quality of major forages cultivated in Hexi Corridor[D]. Lanzhou: Lanzhou University, 2020. (in Chinese)
[27]
任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
REN C Z, HU Y G. China Oat Science. Beijing: China Agriculture Press, 2013. (in Chinese)
[28]
姚晋, 何云, 卢家顶, 张晓霞, 崔亚垒, 马森, 王志昌, 朱晓艳, 史莹华, 李德锋, 孙浩. 河南省秋播饲用燕麦的越冬率、分蘖特性及其生产性能. 草地学报, 2023, 31(2): 528-539.

doi: 10.11733/j.issn.1007-0435.2023.02.027
YAO J, HE Y, LU J D, ZHANG X X, CUI Y L, MA S, WANG Z C, ZHU X Y, SHI Y H, LI D F, SUN H. Winter survival rate, tillering characteristics, and production performance of autumn-sown forage oats in Henan Province. Acta Agrestia Sinica, 2023, 31(2): 528-539. (in Chinese)

doi: 10.11733/j.issn.1007-0435.2023.02.027
[29]
王鹏, 马垭杰, 甘辉林, 顾新民. 祁连山北麓14个饲用燕麦生产性能及饲用价值评价. 畜牧兽医杂志, 2022, 41(6): 95-98, 100.
WANG P, MA Y J, GAN H L, GU X M. Production performance and forage value evaluation of 14 kinds of forage oats at the northern foot of Qilian Mountains. Journal of Animal Science and Veterinary Medicine, 2022, 41(6): 95-98, 100. (in Chinese)
[30]
王小军, 王金兰, 琚泽亮, 梁国玲, 贾志锋, 刘文辉, 马祥, 马金秀, 李文. 环青海湖地区不同饲用燕麦品种生产性能和营养品质综合评价. 中国农业科学, 2024, 57(19): 3730-3742. doi: 10.3864/j.issn.0578-1752.2024.19.002.
WANG X J, WANG J L, JU Z L, LIANG G L, JIA Z F, LIU W H, MA X, MA J X, LI W. Comprehensive evaluation on production performance and nutritional quality of different varieties of forage oat in the Qinghai Lake area. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742. doi: 10.3864/j.issn.0578-1752.2024.19.002. (in Chinese)
[31]
ZHANG J, YAN L, LIU M X, GUO G G, WU B. Analysis of β-d-glucan biosynthetic genes in oat reveals glucan synthesis regulation by light. Annals of Botany, 2021, 127(3): 371-380.

doi: 10.1093/aob/mcaa185 pmid: 33090200
[32]
KAVI KISHOR P B, SREENIVASULU N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 2014, 37(2): 300-311.
[33]
陈杰. 提高象草青贮发酵品质的研究[D]. 南京: 南京农业大学, 2012.
CHEN J. Studies on improving fermentation quality of Napier grass silages[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[34]
孙雷雷, 赵桂琴, 柴继宽, 康晓强, 刘富渊. 贮藏方式和时间对紫花苜蓿干草营养品质的影响. 草原与草坪, 2020, 40(6): 33-38.
SUN L L, ZHAO G Q, CHAI J K, KANG X Q, LIU F Y. Effects of storage methods and time on the nutritional quality of alfalfa hay. Grassland and Turf, 2020, 40(6): 33-38. (in Chinese)
[35]
李晶, 南铭, 刘彦明, 张成君, 任生兰, 边芳. 不同燕麦品种产量和品质及饲喂性能综合评价. 草地学报, 2023, 31(4): 1089-1098.

doi: 10.11733/j.issn.1007-0435.2023.04.018
LI J, NAN M, LIU Y M, ZHANG C J, REN S L, BIAN F. Comprehensive evaluation of the yield, quality and feeding performance on different oat varieties. Acta Agrestia Sinica, 2023, 31(4): 1089-1098. (in Chinese)
[36]
MCDONALD P. The Biochemistry of Silage. Marlow (United Kingdom): Chalcombe Publications, 1991.
[37]
秦梦臻, 沈益新. 生育期对小麦全株青贮发酵品质的影响. 中国农业科学, 2012, 45(8): 1661-1666. doi: 10.3864/j.issn.0578-1752.2012.08.023.
QIN M Z, SHEN Y X. Effects of maturity stage on fermentation quality of whole crop wheat silage. Scientia Agricultura Sinica, 2012, 45(8): 1661-1666. doi: 10.3864/j.issn.0578-1752.2012.08.023. (in Chinese)
[38]
KAISER A G, PILTZ J W, BURNS H M, GRIFFITHS N W. TopFodder Successful Silage. New South Wales: Department of Primary Industries, 2003.
[39]
ASIAN A, OKAMOTO M, YOSHILHIRA T, ATAKU K, NARASAKI N. Effect of ensiling with Acremonium cellulase, lactic acid bacterial and formic acid on tissue structure of timothy and alfalfa. Asian- Australasian Journal of Animal Sciences, 1997, 10(6): 593-598.
[40]
贾春旺, 原现军, 李君风, 闻爱友, 白晰, 肖慎华, 郭刚, 魏化敬, 邵涛. 青稞酒糟对紫花苜蓿和多年生黑麦草混合青贮发酵品质的影响. 南京农业大学学报, 2016, 39(2): 275-280.
JIA C W, YUAN X J, LI J F, WEN A Y, BAI X, XIAO S H, GUO G, WEI H J, SHAO T. Effect of adding wet hulless barley distillers' grains on fermentation quality of mixed ensilage of alfalfa and perennial ryegrass. Journal of Nanjing Agricultural University, 2016, 39(2): 275-280. (in Chinese)
[41]
KAISER E, WEIB K, KRAUSC R. Criterions to judge fermentation quality of grass silages. Proceedings of the Society for Nutritional Physiology, 2000(9): 94-101.
[42]
王福成. 西藏不同海拔燕麦青贮发酵特性及发酵品质改善研究[D]. 林芝: 西藏农牧学院, 2021.
WANG F C. Study on fermentation characteristics and fermentation quality improvement of oat silage at different altitudes in Tibet[D]. Nyingchi: Tibet Agriculture and Animal Husbandry University, 2021. (in Chinese)
[1] JI ShengYang, LU BaiYi, LI PeiWu. Some Reflections on Modern Science of Agricultural Product Quality [J]. Scientia Agricultura Sinica, 2025, 58(9): 1830-1844.
[2] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[3] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[4] HAN LinPu, MA JiLong, QI YongJie, GAO JiaQi, XIE TieNa, JIA Biao. Multispectral Unmanned Aerial Vehicle Parameters Combined with Machine Learning to Predict Silage Maize Biomass [J]. Scientia Agricultura Sinica, 2025, 58(18): 3632-3647.
[5] ZHAO TianTian, YUAN JianLong, ZHUO FengQi, TANG ZhenSan, XU Jie, ZHANG Feng. Comprehensive Evaluation of Potato Flour Quality and Variety Screening [J]. Scientia Agricultura Sinica, 2025, 58(13): 2522-2537.
[6] CAI YuBiao, ZHANG KunJie, WANG YaXuan, LAI FengXiang, HE JiaChun, WAN PinJun, FU Qiang. Effect of Rice Varieties on the Preference of Nilaparvata lugens to Rice Plants Infested by Chilo suppressalis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3998-4006.
[7] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[8] MIAO Long, YANG Lei, XU JingHao, LI Na, WANG FeiYu, QIU LiJuan, WANG XiaoBo. Establishment of Evaluation System and Screening of Disease- Resistant Accessions for Phomopsis Seed Decay in Soybean Germination Stage [J]. Scientia Agricultura Sinica, 2024, 57(11): 2092-2101.
[9] LIU Shuo, XU Ming, LIU JiaCheng, ZHANG QiuPing, MA XiaoXue, LIU Ning, ZHANG YuPing, ZHANG YuJun, ZHAO HaiJuan, LIU WeiSheng. An Overview of the Worldwide Plum Breeding [J]. Scientia Agricultura Sinica, 2023, 56(9): 1744-1759.
[10] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[11] LI li, SUN ling, ZHANG JinHua, ZOU XiaoWei, SUN Hui, REN JinPing, JIANG ZhaoYuan, LIU XiaoMei. Evaluation of Resistance and Analysis of Utilization Value of the Major Japonica Rice Varieties in Jilin Province Based on the Physiological Race Variation of Magnaporthe oryzae [J]. Scientia Agricultura Sinica, 2023, 56(22): 4441-4452.
[12] SHI XinRui, HAN BaiShu, WANG ZiQian, ZHANG YuanLing, LI Ping, ZONG YuZheng, ZHANG DongSheng, GAO ZhiQiang, HAO XingYu. Investigation on the Effects of Climate Change on the Growth and Yield of Different Maturity Winter Wheat Varieties in Northern China Based on the APSIM Model [J]. Scientia Agricultura Sinica, 2023, 56(19): 3772-3787.
[13] ZHANG WenXia, LI Pan, YIN Wen, CHEN GuiPing, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Effects of Multiple Green Manure After Wheat Combined with Different Levels of Nitrogen Fertilization on Wheat Yield, Grain Quality, and Nitrogen Utilization [J]. Scientia Agricultura Sinica, 2023, 56(17): 3317-3330.
[14] PENG WenLi, WANG Rui, CHEN XiaoLei, LIU AHui, ZHENG WeiDong. Effects of Varied Rapeseed Varieties and Cultivation Measures on Harvest Index [J]. Scientia Agricultura Sinica, 2023, 56(17): 3331-3346.
[15] GAO ZiYuan, HU JingAng, ZHANG BeiBei, GONG Biao. Screening and Comprehensive Evaluation of Tomato Rootstocks with High Efficiency of Phosphorus Utilization [J]. Scientia Agricultura Sinica, 2023, 56(14): 2761-2775.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!