Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (15): 3081-3096.doi: 10.3864/j.issn.0578-1752.2025.15.011

• HORTICULTURE • Previous Articles     Next Articles

SnRK2.6 Regulates Pollen Tube Growth and ABA Response in Distant Hybridization in Paeonia lactiflora

ZHOU PingXi(), WANG JingKun, YOU XiaoLong, HUA Chao, GUO HaoNan, ZHANG MingXing, LIU YiPing, HE Dan*(), HE SongLin*()   

  1. College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002
  • Received:2024-10-21 Accepted:2024-12-24 Online:2025-08-01 Published:2025-07-30
  • Contact: HE Dan, HE SongLin

Abstract:

【Objective】 This study aims to identify SnRK2 genes from the Paeonia transcriptome to investigate the molecular mechanism of SnRK2 mediates the ABA signaling pathway in regulating pollen germination and pollen tube growth during distant hybridization of Paeonia lactiflora (P. lactiflora). The goal is to provide a theoretical basis for overcoming hybridization incompatibility in P. lactiflora.【Method】 Based on the transcriptome data of P. lactiflora stigmas (NCBI accession number: PRJNA592882), ABA signaling pathway genes and group Ⅲ SnRK2 genes (PlSnRK2.6) were screened and identified. The PlSnRK2.6 gene was cloned and analyzed for bioinformatics analysis and subcellular localization analysis. ABA content in stigmas at 4, 8, 12, 24, and 36 hours post-pollination (self- and cross-pollination) was measured using enzyme-linked immunosorbent assay (ELISA), along with relative gene expression using quantitative real-time PCR (qPCR). The relative expression levels of PlSnRK2.6 in stigmas under exogenous ABA and its inhibitor treatments were analyzed, and yeast two-hybrid (Y2H) assays were conducted to identify PlSnRK2.6-interacting proteins.【Result】 In vitro pollen culture revealed that pollen germination rates and pollen tube lengths were significantly reduced in ABA-supplemented media compared to normal media, indicating that ABA inhibits pollen germination and pollen tube growth in P. lactiflora. Transcriptome analysis identified key genes in the ABA signaling pathway, including KAT1 (ion transport), RBOHF (ROS production), SnRK2 (protein kinase), PP2C (protein phosphatase), ABFs, and ABI family genes. qPCR analysis showed that, compared to self-pollination, the expression of PlSnRK2.6 and PlRBOHF was significantly upregulated, while PlKAT1 expression was downregulated. PlABF2 and PlABI5 exhibited a rise-then-fall expression trend, consistent with transcriptome FPKM trends. The cloned PlSnRK2.6 CDS was 1 092 bp in length, encoding a protein of 363 amino acids. Gene structure analysis revealed a conserved STKc_SnRK2-3 domain. Phylogenetic analysis showed that the SnRK2 family is divided into three subgroups, with PlSnRK2.6 clustering into group Ⅲ alongside SnRK2.6 from Paeonia suffruticosa and Arabidopsis thaliana. PlSnRK2.6 was most closely related to SnRK2.6 in Potentilla indica, with a highly conserved SnRK2-3 domain. Subcellular localization indicated that PlSnRK2.6 is localized in the nucleus. The ABA content in hybrid stigmas was generally higher than in self-pollination. Similarly, PlSnRK2.6 expression was significantly higher during hybridization, particularly at 24 and 36 hours post-pollination, with expression levels 8.94- and 5.07-fold higher than in self-pollination, respectively. ABA responsiveness assays confirmed that PlSnRK2.6 is strongly responsive to ABA, with a more pronounced expression trend in the late stages of pollination. Yeast two-hybrid assays showed that PlSnRK2.6 lacks self-activation activity and interacts with PlACP1 and PlHMGB3.【Conclusion】 An ABA-induced protein kinase, PlSnRK2.6, was identified to be highly expressed in the stigmas of P. lactiflora during distant hybridization and interacts with PlACP1 and PlHMGB3. It is proposed that PlSnRK2.6 and its interacting proteins regulate pollen germination and pollen tube growth via the ABA signaling pathway, thereby playing a key role in modulating hybrid incompatibility in P. lactiflora.

Key words: Paeonia lactiflora, distant hybridization incompatibility, ABA, SnRK2.6, hormone response

Table 1

The sequence of primers in the experiments"

引物名称
Gene names
引物序列
Primer sequence (5′-3′)
作用
Function
PlSnRK2.6-F
PlSnRK2.6-R
ATGGATCGATCGACCATTAC
AGGTAGTGTATGCAATGTGA
克隆PlSnRK2.6
Clone PlSnRK2.6
PlSnRK2.6-2300-F ACGGGGGACGAGCTCGGTACCATGGATCGATCGACCATTACGGT 2300载体构建
2300 vector construction
PlSnRK2.6-2300-R CTTGCTCACCATGGTGTCGAC CATTGCATACACTACCTCTCCA
β-Tubulin-F TGAGCACCAAAGAAGTGGACGAAC β内参基因
β reference gene
β-Tubulin-R CACACGCCTGAACATCTCCTGAA
PlSnRK2.6-BD-F CATGGAGGCCGAATTCATGGATCGATCGACCATTACGGT 酵母双杂交
Yeast two-hybrid (Y2H)
PlSnRK2.6-BD-R GCAGGTCGACGGATCCCATTGCATACACTACCTCTCCA
qPCR-PlSnRK2.6-F TTTCAGCGAGGATGAGGCAC PlSnRK2.6相对表达量测定
PlSnRK2.6 relative expression measurement
qPCR-PlSnRK2.6-R CGGGCTTCCATCCAACAATG
qPCR-PlACP1-F ACGGTGGACAAGGTTTGTGA PlACP1相对表达量测定
PlACP1 relative expression measurement
qPCR-PlACP1-R TCAGCTCCAAGAGACGCAAA
qPCR-PlHMGB3-F ACAAACCAAAGAGACCCGCA PlHMGB3相对表达量测定
PlHMGB3 relative expression measurement
qPCR-PlHMGB3-R CAACCACCGCAACACCTTTT
qPCR-PlPP2C-F GCATATCTCAAGAGGACGGAGTTC PlPP2C相对表达量测定
PlPP2C relative expression measurement
qPCR-PlPP2C-R TTGTGTATTGTTACGGATGGCTCAG
qPCR-PlABI5-F CACCGCCACCGCCTCAG PlABI5相对表达量测定
PlABI5 relative expression measurement
qPCR-PlABI5-R GCCACCACCATCTACTCCAATAATG
qPCR-PlPYR-F CACGACCCTGCCGATAATCAATG PlPYR相对表达量测定
PlPYR relative expression measurement
qPCR-PlPYR-R TTCCCTGCACTACACACCTACTG
qPCR-RBOHF-F TCTCGGATAGGTGTCTTCTACTGTG PlRBOHF相对表达量测定
PlRBOHF relative expression measurement
qPCR-RBOHF-R TGGAATTGGAAGCGGGTTGATG

Fig. 1

Effects of different ABA concentrations on pollen germination rate and pollen tube growth in P. lactiflora A: Pollen growth; B: Pollen germination rate statistics; C: Pollen tube length statistics. Pt: Pollen tube; Pg: Pollen grain. *Indicates significant differences (P<0.01); **indicates significant differences (P<0.001). The same as below"

Fig. 2

Heatmap of P. lactiflora transcriptome ABA signaling pathway gene family expression analysis ABA: Abscisic acid; PYR/PYL/RCAR: ABA receptor proteins; PP2Cs: Protein phosphatase 2C; SnRK2s: Protein kinase SnRK2 gene family; KAT1: Inward-rectifying potassium channel gene; RBOH: Respiratory burst oxidase homolog; ABI, ABF: bZIP transcription factors; P represents phosphorylation. Arrows indicate direct regulation/interactions. PL01, PL02, PL03 represent peony stigma at 24 h self-pollination, 24 h cross-pollination, and 36 h cross-pollination, respectively. The same as below"

Fig. 3

Comparison of RNA-seq and qPCR expression of ABA signalling pathway genes in P. lactiflora stigmas"

Fig. 4

Phylogenetic tree of SnRK2 gene family members in P. lactiflora, P.Suffruticosa and Arabidopsis thaliana"

Fig. 5

Analysis of conserved domain and gene structure of PlSnRK2 gene family STKc_SnRK2: Catalytic domain of the Serine/Threonine kinases, sucrose nonfermenting 1-related protein kinase subfamily 2; PKc_like: Protein kinases, catalytic domain; STKc_SnRK2-3: Catalytic domain of the Serine/Threonine kinases, sucrose nonfermenting 1-related protein kinase subfamily 2, group 3s"

Fig. 6

Analysis of PlSnRK2.6 protein sequence A: Prediction of protein conserved domain; B: Phylogenetic analysis of PlSnRK2.6 with SnRK2.6 proteins from other species; C: Prediction of the secondary structure; D: Multiple sequences alignment of PlSnRK2.6 with SnRK2.6 proteins from different plant species"

Fig. 7

Subcellular localization of PlSnRK2.6"

Fig. 8

Changes of endogenous hormone ABA content in the stigma of P. lactiflora at different time periods"

Fig. 9

Changes in the relative expression of PlSnRK2.6 within the stigma of P. lactiflora at different times"

Fig. 10

Changes in relative expression of PlSnRK2.6 after external application of ABA and inhibitor treatments to stigmas"

Fig. 11

Self activation detection of bait carrier pGBKT7-PlSnRK2.6"

Table 2

Candidate interacting proteins"

编号
Number
蛋白
Description
基因长度
Gene length (bp)
分子功能
Molecular function
1 酰基载体蛋白1
Acyl carrier protein 1 (ACP1)
424 激活酰基载体活性、参与脂肪酸生物合成过程
Activates acyl carrier activity and participates in fatty acid biosynthesis
2 高迁移率族蛋白B3
High mobility group B protein 3 (HMGB3)
490 参与DNA结合转录因子活性、染色质的结构组成
Involved in DNA-binding transcription factor activity and chromatin structure composition
3 胚胎晚期丰富蛋白18
Late embryogenesis abundant protein 18 (LEA18)
645 涉及脱水耐受性、胚胎发育、花粉管发育、参与对渗透压、失水的反应
Involved in desiccation tolerance, embryo development, and pollen tube development; responds to osmotic stress and water loss
4 胚胎晚期丰富蛋白29
Late embryogenesis abundant protein 29 (LEA29)
896 涉及脱水耐受性
Involved in desiccation tolerance
5 胚胎晚期丰富蛋白76
Late embryogenesis abundant protein 76 (LEA76)
996 涉及脱水耐受性、在胚胎发生晚期和干燥种子中表达
Involved in desiccation tolerance, expressed during late embryogenesis and in dry seeds
6 ABA诱导蛋白PHV A1
ABA-inducible protein PHV A1 (HVA1; LEA4)
496 涉及脱水耐受性、胚胎发育、花粉管发育、参与对渗透压、失水的反应
Involved in desiccation tolerance, embryo development, and pollen tube development; responds to osmotic stress and water loss
7 铁氧还蛋白Ⅲ
FerredoxinⅢ (Fd Ⅲ)
430 叶绿体基质来源、在多种代谢反应中转移电子
Chloroplast stroma-derived; transfers electrons in various metabolic reactions

Fig. 12

Relative expression changes of PlSnRK2.6 and its interacting genes PlHMGB3 and PlACP1"

Fig. 13

The hypothetical model of SnRK2-mediated ABA signaling pathway in the stigma regulating distant hybridization incompatibility in P. lactiflora"

[1]
梁长安, 王二强, 韩鲲, 王若晗, 卢林. 简述伊藤杂种的来源及与牡丹的异同点和应用. 现代园艺, 2022(7): 65-67.
LIANG C A, WANG E Q, HAN K, WANG R H, LU L. The origin of ITO hybrid, its similarities and differences with peony and its application are briefly described. Contemporary Horticulture, 2022(7): 65-67. (in Chinese)
[2]
马翔龙, 吴敬需, 刘少华. 伊藤牡丹发展现状与展望. 中国花卉园艺, 2018(16): 28-31.
MA X L, WU J X, LIU S H. Development status and prospect of Ito peony. China Flowers & Horticulture, 2018(16): 28-31. (in Chinese)
[3]
贺丹, 王雪玲, 高晓峰, 吕博雅, 刘艺平, 何松林. 牡丹芍药远缘杂交亲和性. 东北林业大学学报, 2014, 42(7): 65-68.
HE D, WANG X L, GAO X F, B Y, LIU Y P, HE S L. Intergeneric cross-compatibility between peonies. Journal of Northeast Forestry University, 2014, 42(7): 65-68. (in Chinese)
[4]
贺丹, 解梦珺, 吕博雅, 王政, 刘艺平, 何松林. 牡丹与芍药的授粉亲和性表现及其生理机制分析. 西北农林科技大学学报(自然科学版), 2017, 45(10): 129-136.
HE D, XIE M J, B Y, WANG Z, LIU Y P, HE S L. Analysis of pollination affinity performance and its physiological mechanism in Paeoniasuffruticosaand Paeonia lactiflora. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(10): 129-136. (in Chinese)
[5]
MA K F, SONG Y P, HUANG Z, LIN L Y, ZHANG Z Y, ZHANG D Q. The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid. Plant Cell Reports, 2013, 32(3): 401-414.

doi: 10.1007/s00299-012-1373-2 pmid: 23224581
[6]
MESEJO C, YUSTE R, MARTÍNEZ-FUENTES A, REIG C, IGLESIAS D J, PRIMO-MILLO E, AGUSTÍ M. Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina). Physiologia Plantarum, 2013, 148(1): 87-96.
[7]
ZAKHAROVA E V, KHALILUEV M R, KOVALEVA L V. Hormonal signaling in the progamic phase of fertilization in plants. Horticulturae, 2022, 8(5): 365.
[8]
杨谷良, 秦仲麒, 陈娟. 植物生长调节物质对黄金梨花粉萌发和花粉管生长的影响. 种子, 2010, 29(7): 39-41.
YANG G L, QIN Z Q, CHEN J. Effects of plant growth regulator on pollen germination and pollen tube growth of Whangkeumbae (Pyrus pyrifolia). Seed, 2010, 29(7): 39-41. (in Chinese)
[9]
张翔宇, 贾文庆, 何松林, 邱永杰, 王乔健, 胡缓, 史来琨, 刘会超. 牡丹种间远缘杂交不亲和的细胞学与生理机制研究. 林业科学研究, 2022, 35(4): 63-71.
ZHANG X Y, JIA W Q, HE S L, QIU Y J, WANG Q J, HU H, SHI L K, LIU H C. Interspecific distant hybrid incompatibility cytology and its physiological mechanism in Paeonia suffruticosa Andr. Forest Research, 2022, 35(4): 63-71. (in Chinese)
[10]
杜明, 于旭东, 吴繁花. 海南油茶授粉后雌蕊内源激素的动态变化. 热带生物学报, 2023, 14(2): 173-177.
DU M, YU X D, WU F H. Dynamic changes of endogenous hormones in self-pollinated and cross-pollinated pistils of two Camellia species in Hainan. Journal of Tropical Biology, 2023, 14(2): 173-177. (in Chinese)
[11]
万正林, 周艳霞, 邓俭英, 李立志, 武鹏, 龙明华. 内源激素对同源四倍体黑皮冬瓜自交花粉萌发生长的影响. 华南农业大学学报, 2018, 39(1): 57-63.
WAN Z L, ZHOU Y X, DENG J Y, LI L Z, WU P, LONG M H. Effects of endogenous hormones on pollen germination and growth of autotetraploid black wax gourd. Journal of South China Agricultural University, 2018, 39(1): 57-63. (in Chinese)
[12]
王甜. 紫薇和川黔紫薇远缘杂交亲和性及种子萌发特性研究[D]. 长沙: 中南林业科技大学, 2022.
WANG T. Study on the compatibility and seed germination characteristics of distant hybridization between Lagerstroemia indica and Lagerstroemia indica from Sichuan and Guizhou[D]. Changsha: Central South University of Forestry & Technology, 2022. (in Chinese)
[13]
LAN Z J, SONG Z H, WANG Z J, LI L, LIU Y Q, ZHI S H, WANG R H, WANG J Z, LI Q Y, BLECKMANN A, ZHANG L, DRESSELHAUS T, DONG J, GU H Y, ZHONG S, QU L J. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas. Cell, 2023, 186(22): 4773-4787.e12.

doi: 10.1016/j.cell.2023.09.003 pmid: 37806310
[14]
SON S, PARK S R. The rice SnRK family: biological roles and cell signaling modules. Frontiers in Plant Science, 2023, 14: 1285485.
[15]
HALFORD N G, HEY S J. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochemical Journal, 2009, 419(2): 247-259.

doi: 10.1042/BJ20082408 pmid: 19309312
[16]
NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development. Plant Cell Reports, 2013, 32(7): 959-970.

doi: 10.1007/s00299-013-1418-1 pmid: 23535869
[17]
LU K, ZHANG Y D, ZHAO C F, ZHOU L H, ZHAO Q Y, CHEN T, WANG C L. The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. Plant Molecular Biology, 2020, 102(1/2): 199-212.
[18]
NAKASHIMA K, FUJITA Y, KANAMORI N, KATAGIRI T, UMEZAWA T, KIDOKORO S, MARUYAMA K, YOSHIDA T, ISHIYAMA K, KOBAYASHI M, SHINOZAKI K, YAMAGUCHI- SHINOZAKI K. Three Arabidopsis SnRK2 protein kinases, SRK2D/ SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant & Cell Physiology, 2009, 50(7): 1345-1363.
[19]
KOBAYASHI Y, MURATA M, MINAMI H, YAMAMOTO S, KAGAYA Y, HOBO T, YAMAMOTO A, HATTORI T. Abscisic acid- activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. The Plant Journal, 2005, 44(6): 939-949.
[20]
SANO N, MARION-POLL A. ABA metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences, 2021, 22(10): 5069.
[21]
LIANG S, LU K, WU Z, JIANG S C, YU Y T, BI C, XIN Q, WANG X F, ZHANG D P. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/ OST1 in Arabidopsis guard cell signalling in response to abscisic acid. Journal of Experimental Botany, 2015, 66(20): 6355-6369.
[22]
韩建普. 拟南芥蛋白激酶调控NADPH氧化酶RBOHF的机理研究[D]. 北京: 中国农业大学, 2019.
HAN J P. Study on the mechanism of Arabidopsis protein kinase regulating NADPH oxidase RBOHF[D]. Beijing: China Agricultural University, 2019. (in Chinese)
[23]
WU J Y, JIN C, ZHANG S L. Potassium flux in the pollen tubes was essential in plant sexual reproduction. Plant Signaling & Behavior, 2011, 6(6): 898-900.
[24]
POSTIGLIONE A E, MUDAY G K. Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. Plant Physiology, 2023, 192(1): 469-487.
[25]
POSTIGLIONE A E, MUDAY G K. The role of ROS homeostasis in ABA-induced guard cell signaling. Frontiers in Plant Science, 2020, 11: 968.

doi: 10.3389/fpls.2020.00968 pmid: 32695131
[26]
ALI M F, MUDAY G K. Reactive oxygen species are signaling molecules that modulate plant reproduction. Plant, Cell & Environment, 2024, 47(5): 1592-1605.
[27]
寇小兵. RALF多肽调控梨花粉管生长的分子机制研究[D]. 南京: 南京农业大学, 2018.
KOU X B. Study on molecular mechanism of RALF polypeptide regulating pear pollen tube growth[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[28]
杨琳. 受体激酶SRK与FERONIA调控大白菜远缘杂交生殖隔离的分子机制[D]. 泰安: 山东农业大学, 2023.
YANG L. Molecular mechanism of receptor kinase SRK and FERONIA regulating reproductive isolation of distant hybridization in Chinese cabbage[D]. Taian: Shandong Agricultural University, 2023. (in Chinese)
[29]
DRÖGE-LASER W, SNOEK B L, SNEL B, WEISTE C. The Arabidopsis bZIP transcription factor family—an update. Current Opinion in Plant Biology, 2018, 45: 36-49.
[30]
XIE Z, YUE D, TANG C, ZHANG M L, ZHANG H, ZHANG S L, WU J Y, WANG P. PbrVAMP721i, an R-SNARE protein, contributes to the growth of the pollen tube in Pyrus bretschneideri. Scientia Horticulturae, 2024, 333: 113257.
[31]
张庆雯, 祁静静, 谢宇, 谢竹, 彭蕴, 李强, 彭爱红, 邹修平, 何永睿, 陈善春, 姚利晓. 黄龙病菌胁迫下‘锦橙’CsCalS5表达和胼胝质沉积的初步分析. 园艺学报, 2021, 48(2): 276-288.

doi: 10.16420/j.issn.0513-353x.2020-0282
ZHANG Q W, QI J J, XIE Y, XIE Z, PENG Y, LI Q, PENG A H, ZOU X P, HE Y R, CHEN S C, YAO L X. Preliminary analysis of CsCalS5 and callose deposition in Citrus sinensis infected with candidatus liberibacter asiaticus. Acta Horticulturae Sinica, 2021, 48(2): 276-288. (in Chinese)
[32]
YAO L X, GUO X R, SU J, ZHANG Q W, LIAN M Y, XUE H, LI Q, HE Y R, ZOU X P, SONG Z, CHEN S C. ABA-CsABI5-CsCalS 11 module upregulates Callose deposition of Citrus infected with Candidatus Liberibacter asiaticus. Horticulture Research, 2023, 11(2): uhad276.
[33]
DEY A, SAMANTA M K, GAYEN S, MAITI M K. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biology, 2016, 16(1): 158.
[34]
陈明, 孙静. 凤丹花粉体外萌发规律探究. 现代农业研究, 2024, 30(7): 80-85.
CHEN M, SUN J. Study on pollen germination regularity of Fengdan in vitro. Modern Agriculture Research, 2024, 30(7): 80-85. (in Chinese)
[35]
ZHANG M W, ZHAO J X, HOSHINO Y. Deep learning-based high-throughput detection of in vitro germination to assess pollen viability from microscopic images. Journal of Experimental Botany, 2023, 74(21): 6551-6562.
[36]
何学高, 赵爱国, 谢冬冬, 黄晓华. 漆树TvGST7基因克隆及其功能分析. 西北农林科技大学学报(自然科学版), 2020, 48(6): 39-51.
HE X G, ZHAO A G, XIE D D, HUANG X H. Cloning and characterization analysis of glutathione S-transferase TvGST7 in Toxicodendron vernicifluum. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(6): 39-51. (in Chinese)
[37]
贺丹, 曹健康, 何松林, 张明星, 华超, 张佼蕊, 刘艺平. 芍药远缘杂交不亲和PlABCG15基因的克隆及表达分析. 河南农业大学学报, 2021, 55(6): 1074-1080, 1096.
HE D, CAO J K, HE S L, ZHANG M X, HUA C, ZHANG J R, LIU Y P. Cloning and expression analysis of distant hybridization incompatibility PlABCG15 gene from Paeonia lactiflora. Journal of Henan Agricultural University, 2021, 55(6): 1074-1080, 1096. (in Chinese)
[38]
曹健康. 芍药PlARF2基因的克隆与功能分析[D]. 郑州: 河南农业大学, 2023.
CAO J K. Cloning and functional analysis of PlARF2 gene from Paeonia lactiflora[D]. Zhengzhou: Henan Agricultural University, 2023. (in Chinese)
[39]
ZHOU P, LI J W, JIANG H Y, YANG Z J, SUN C Q, WANG H Y, SU Q, JIN Q J, WANG Y J, XU Y C. Hormone and transcriptomic analysis revealed that ABA and BR are key factors in the formation of inter-subgeneric hybridization barrier in water lily. Physiologia Plantarum, 2024, 176(1): e14177.
[40]
LIU C, SHEN L P, XIAO Y, VYSHEDSKY D, PENG C, SUN X, LIU Z W, CHENG L J, ZHANG H, HAN Z F, CHAI J J, WU H M, CHEUNG A Y, LI C. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science, 2021, 372(6538): 171-175.

doi: 10.1126/science.abc6107 pmid: 33833120
[41]
ZHANG H, LIU X Y, TANG C, LV S Z, ZHANG S L, WU J Y, WANG P. PbRbohH/J mediates ROS generation to regulate the growth of pollen tube in pear. Plant Physiology and Biochemistry, 2024, 207: 108342.
[42]
HAQUE T, EAVES D J, LIN Z C, ZAMPRONIO C G, COOPER H J, BOSCH M, SMIRNOFF N, FRANKLIN-TONG V E. Self- incompatibility triggers irreversible oxidative modification of proteins in incompatible pollen. Plant Physiology, 2020, 183(3): 1391-1404.
[43]
KLODOVÁ B, FÍLA J. A decade of pollen phosphoproteomics. International Journal of Molecular Sciences, 2021, 22(22): 12212.
[44]
李靖怡. 酸性磷酸酶OsACP1在水稻缺磷适应性中的功能研究[D]. 武汉: 华中农业大学, 2020.
LI J Y. Study on the function of acid phosphatase OsACP1 in the adaptability of rice to phosphorus deficiency[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[45]
LI S N, XIN M, LUAN J, LIU D, WANG C H, LIU C H, ZHANG W S, ZHOU X Y, QIN Z W. Overexpression of CsHMGB alleviates phytotoxicity and propamocarb residues in cucumber. Frontiers in Plant Science, 2020, 11: 738.
[46]
陈伟伟. 拟南芥Male Sterile2控制花粉外壁形成的生化机理研究[D]. 上海: 上海交通大学, 2012.
CHEN W W. Study on biochemical mechanism of Arabidopsis thaliana Male Sterile2 controlling pollen exine formation[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
[47]
HERNÁNDEZ M L, LIMA-CABELLO E, ALCHÉ J D, MARTÍNEZ- RIVAS J M, CASTRO A J. Lipid composition and associated gene expression patterns during pollen germination and pollen tube growth in olive (Olea europaea L.). Plant & Cell Physiology, 2020, 61(7): 1348-1364.
[48]
LEI X J, LIU Z Y, LI X P, TAN B, WU J, GAO C Q. Screening and functional identification of salt tolerance HMG genes in Betula platyphylla. Environmental and Experimental Botany, 2021, 181: 104235.
[49]
UEDA T, YOSHIDA M. HMGB proteins and transcriptional regulation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2010, 1799(1/2): 114-118.
[50]
KOVALEVA L V, ZAKHAROVA E V, VORONKOV A S, TIMOFEEVA G V, ANDREEV I M. Role of abscisic acid and ethylene in the control of water transport-driving forces in germinating Petunia male gametophyte. Russian Journal of Plant Physiology, 2017, 64(5): 782-793.
[1] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[2] YU ShuHan, QIN XiaoJie, WU QiChao, LI Ling, ZANG DeKui, MA Yan. Transcriptome Analysis of Paeonia lactiflora in Response to Alternaria tenuissima Infection [J]. Scientia Agricultura Sinica, 2024, 57(15): 3035-3052.
[3] WANG Yuan, DU MengDan, LI ZhengGang, SHE XiaoMan, YU Lin, LAN GuoBing, DING ShanWen, HE ZiFu, TANG YaFei. Identification of Pathogen Causing Tomato White Tip and Curl Leaf Disease and Its Pathogenicity in Guangdong Province [J]. Scientia Agricultura Sinica, 2024, 57(12): 2350-2363.
[4] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[5] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[6] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[7] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[8] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[9] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[10] HE YunChuan,WANG XinPu,HONG Bo,ZHANG TingTing,ZHOU XueFei,JIA YanXia. Effects of Four Insecticides LC25 on Feeding Behavior of Q-Type Bemisia tabaci Adults [J]. Scientia Agricultura Sinica, 2021, 54(2): 324-333.
[11] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[12] ZHAO FuMei,WANG Shuang,TIAN YuTing,QIAO Qi,WANG YongJiang,ZHANG DeSheng,ZHANG ZhenChen. An Investigation into Key Factors Influencing the Occurrence of Virus Disease in Sweet Potato [J]. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240.
[13] LI Xin,ZHANG WenJu,WU Lei,REN Yi,ZHANG JunDa,XU MingGang. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation [J]. Scientia Agricultura Sinica, 2021, 54(14): 3043-3056.
[14] ZHAO Xue,WANG Feng,WANG WenJing,LIU XiaoFeng,BIAN ShiQuan,LIU YanHua,LIU XinMin,DU YongMei,ZHANG ZhongFeng,ZHANG HongBo. Splicing Property Analyses of the NRSE1 Element from Tobacco PR3b mRNA After Fusion Expression with GUS Gene [J]. Scientia Agricultura Sinica, 2020, 53(8): 1524-1531.
[15] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!