Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4725-4745.doi: 10.3864/j.issn.0578-1752.2024.23.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Study on the Influence of Rural Population Structure on Agricultural Green Total Factor Productivity

DENG YuanJian1,2(), LIU Peng1,3()   

  1. 1 School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073
    2 Collaborative Innovation Center for Emissions Trading System Co-constructed by the Province and Ministry, Wuhan 430205
    3 Wens Foodstuff Group CO., LTD., Yunfu 527400, Guangdong
  • Received:2024-06-14 Accepted:2024-07-30 Online:2024-12-01 Published:2024-12-07

Abstract:

【Objective】 The development level of agricultural green total factor productivity in China was measured, and the mechanism and path of rural population structure on agricultural green total factor productivity were analyzed, so as to provide the theoretical basis and decision-making reference for promoting agricultural green development in China. 【Method】 Based on the input-oriented, constant return to scale and the super-efficient SBM model with unexpected output combined with Malmquist- Luenberger (ML) index, the agricultural green total factor productivity of 31 provinces and cities in China from 2000 to 2021 was measured by using the software of MaxDEA. 【Result】 (1) The level of green total factor productivity in Chinese agriculture from 2000 to 2021 exhibited significant temporal and spatial differences. The level of green total factor productivity in agriculture showed a trend of slow decline followed by steady increase and then rapid increase, with the lowest value being 0.5016 in 2005 and the highest value being 0.8872 in 2020, divided by 2005 and 2013; the most provinces were at a medium to high level, with 1 province at a low level, 15 provinces at a medium level, accounting for 48.39%, 12 provinces at a medium to high level, accounting for 38.71%, and 3 provinces at a high level. (2) The various indicators of rural population structure had a significant inhibitory effect on agricultural green total factor productivity. (3) The impact of various indicators, such as rural child dependency ratio, gender ratio, Engel coefficient of rural residents, and average years of education of rural population, on agricultural green total factor productivity mainly depended on the efficiency of agricultural green technology in the rural population structure. (4) The impact of rural population structure on agricultural green total factor productivity had obvious regional characteristics, and the influence coefficients of various indicators varied significantly in different regions. Among the negative impacts of various indicators on agricultural green total factor productivity, the influence of rural child dependency ratio was most significant in the central region, the influence of rural gender ratio was most significant in the eastern region, the influence of average education years of rural population was most significant in the western region, and the influence of Engel coefficient of rural residents was relatively significant nationwide. 【Conclusion】 There were significant differences in the green total factor productivity of agriculture among different provinces in China, and the agricultural population structure inhibited the green development of agriculture, with regional variations. Therefore, it was necessary to build a sustainable rural labor input system, explore and cultivate rural female human resources, build a long-term mechanism for increasing farmers' income, promote the orderly transfer of rural labor, fill the gaps in regional opening up, and improve the ecological oriented financial investment structure for supporting agriculture.

Key words: rural population structure, agricultural green total factor productivity, green development, SBM model

Table1

Index system for calculating agricultural green total factor productivity"

指标类型
Index type
指标名称
Index name
指标说明
Index description
单位
Unit
参考文献
Reference
投入指标
Input index
劳动力投入
Labor input
农业从业人员
Agricultural employees
万人
Ten thousand people
吴传清等[19],杜红梅等[27],张丝雨等[28]
WU C Q, et al[19], DU H M, et al[27], ZHANG S Y, et al [28]
土地投入
Land input
农作物播种面积
Planting area of crops
103 hm2
灌溉投入
Irrigation input
有效灌溉面积
Effective irrigation area
103 hm2
化肥投入
Chemical fertilizer input
农用化肥施用量
Application amount of agricultural chemical fertilizer
104 t
农药投入
Pesticide input
农药使用量
Amounts of pesticides used
t
农膜投入
Agricultural film input
农用塑料薄膜使用量
Amounts of agriculture film used
t
柴油投入
Diesel input
农用柴油使用量
Agricultural diesel consumption
104 t
机械投入
Mechanical input
农业机械总动力
Farm machinery production
104 kW·h
期望产出指标
Expected output index
经济价值
Economic value
农业总产值
Total value of farm output
108 yuan 孙能利等[21],刘二阳等[22]
Robert Costanza[23],谢高地等[24]
SUN N L, et al[21], LIU E Y, et al[22], Robert Costanza[23], XIE G D, et al [24]
生态价值
Ecological value
农业现实生态价值量
Agricultural real ecological value quantity
108 yuan
非期望产出指标
Unexpected output index
农业碳排放
Agricultural carbon emissions
农业生产活动产生的碳排放总量
Total carbon emissions from agricultural production activities
104 t 郭海红等[29],鄢曹政等[30],田云等[25],姜松等[26]
GUO H H, et al [29], YAN C Z, et al [30], TIAN Y, et al [25], JIANG S, et al [26]
农业面源污染
Agricultural non-point source pollution
农业生产活动造成的面源污染
Non-point source pollution caused by agricultural production activities
104 t

Table 2

Measurement results of agricultural green total factor productivity in 31 provinces (municipalities and autonomous regions) in China from 2001 to 2021"

省份
Province
年份 Year
2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021
北京Beijing 0.481 1 0.542 2 0.585 3 0.683 9 0.706 0 0.725 9 0.786 4 0.921 0 1.080 6 0.867 0 1.008 5
天津Tianjin 0.399 5 0.431 3 0.404 9 0.437 5 0.428 0 0.510 5 0.556 0 0.668 3 0.805 3 0.936 1 1.087 7
河北Hebei 0.357 1 0.350 1 0.350 1 0.388 8 0.418 1 0.456 7 0.488 1 0.533 9 0.634 1 0.701 4 0.709 0
山西Shanxi 0.374 9 0.409 9 0.377 6 0.440 4 0.459 8 0.462 4 0.528 9 0.604 6 0.740 3 0.742 0 0.547 8
内蒙古Neimenggu 0.634 0 0.619 3 0.582 3 0.585 6 0.599 7 0.628 1 0.634 0 0.725 4 0.788 9 1.111 0 1.011 7
辽宁Liaoning 0.425 0 0.455 8 0.479 9 0.484 1 0.491 4 0.496 0 0.562 2 0.709 9 1.000 7 1.032 4 0.850 8
吉林Jilin 0.451 7 0.543 2 0.554 6 0.565 9 0.709 3 0.691 9 0.766 9 0.832 9 0.885 3 1.043 0 1.018 3
黑龙江Heilongjiang 0.532 2 0.577 3 0.659 3 0.620 6 1.037 0 0.605 7 0.641 1 0.834 2 0.852 2 1.207 7 1.011 6
上海Shanghai 0.490 9 1.006 0 0.912 6 1.003 4 1.002 0 0.668 5 0.520 4 0.526 8 0.524 9 0.546 2 0.587 9
江苏Jiangsu 0.466 3 0.464 0 0.501 1 0.529 2 0.537 5 0.574 6 0.612 4 0.655 1 0.703 5 0.762 5 0.754 0
浙江Zhejiang 0.404 1 0.424 0 0.442 9 0.467 6 0.482 4 1.005 4 0.510 2 0.572 4 0.669 4 0.851 1 1.024 0
安徽Anhui 0.313 9 0.289 6 0.297 8 0.319 6 0.380 4 0.382 0 0.389 2 0.432 4 0.482 6 0.510 0 0.485 9
福建Fujian 0.475 1 0.476 5 0.461 7 0.435 8 0.466 8 0.490 4 0.518 1 0.571 5 0.666 0 0.750 4 1.051 7
江西Jiangxi 0.426 3 0.411 2 0.391 4 0.398 9 0.409 0 0.410 2 0.480 5 0.541 6 0.611 5 0.677 3 0.668 5
山东Shandong 0.284 2 0.277 1 0.301 9 0.318 9 0.349 2 0.370 2 0.406 8 0.466 1 0.536 6 0.594 4 0.620 9
河南Henan 0.364 8 0.342 2 0.396 8 0.447 5 0.466 4 0.476 8 0.509 6 0.584 3 0.678 6 0.758 7 0.747 5
湖北Hubei 0.369 7 0.341 0 0.385 1 0.422 1 0.441 1 0.472 0 0.495 2 0.573 5 0.648 1 0.713 7 0.639 5
湖南Hunan 0.401 4 0.383 0 0.387 5 0.403 5 0.412 0 0.439 2 0.455 0 0.511 5 0.559 1 0.587 5 0.614 9
广东Guangdong 0.529 8 0.594 9 0.634 9 0.653 9 0.603 3 0.628 2 0.684 8 0.734 8 0.827 6 0.934 0 1.159 4
广西Guangxi 0.441 1 0.448 6 0.462 3 0.478 3 0.487 3 0.513 1 0.549 5 0.601 4 0.698 0 0.734 2 0.746 1
海南Hainan 1.207 6 1.001 6 0.705 3 0.645 2 0.660 4 0.647 8 0.676 4 1.005 7 1.004 5 1.003 5 1.000 0
重庆Chongqing 0.477 0 0.476 8 0.483 0 0.478 1 0.520 4 0.550 4 0.595 0 0.656 1 0.746 6 0.776 9 0.816 2
四川Sichuan 0.426 5 0.438 6 0.440 2 0.455 3 0.513 7 0.502 7 0.538 2 0.579 1 0.665 0 0.707 5 0.755 7
贵州Guizhou 1.009 7 0.793 8 0.705 2 0.593 2 0.732 7 0.545 6 0.622 8 0.804 1 1.031 2 1.087 5 1.000 0
云南Yunnan 0.423 7 0.432 0 0.422 4 0.487 9 0.459 8 0.445 9 0.455 8 0.529 8 0.609 5 0.838 9 1.013 1
西藏Xizang 1.083 8 0.839 9 0.693 8 1.022 7 1.015 6 0.719 4 0.647 3 0.586 0 0.475 3 1.008 7 1.000 0
陕西Shaanxi 0.560 7 0.600 5 0.616 6 0.692 9 0.651 6 0.762 8 0.751 8 0.855 6 0.970 1 1.002 2 1.056 7
甘肃Gansu 0.398 4 0.412 0 0.458 3 0.425 0 0.493 4 0.447 8 0.501 6 0.569 3 0.822 8 1.020 4 1.017 2
青海Qinghai 1.020 4 0.512 6 0.550 9 0.662 1 0.591 2 0.522 0 0.667 0 0.682 9 0.738 7 0.910 5 1.025 9
宁夏Ningxia 0.466 5 0.469 3 0.473 4 0.468 4 0.439 9 0.469 8 0.603 2 0.719 9 1.017 2 0.959 6 0.580 4
新疆Xinjiang 0.382 2 0.413 0 0.429 8 0.459 0 0.474 0 0.507 1 0.513 8 0.485 1 0.550 2 0.739 5 0.592 9

Fig. 1

Dynamic change trend of agriculture green total factor productivity in China from 2000 to 2021"

Table 3

Classification of agriculture green total factor productivity"

低水平
Low level
中等水平
Medium level
中高水平
Middle and high level
高水平
High level
相对有效
Relatively effective
农业绿色全要素生产率
Agricultural green total factor productivity
(0,0.4] (0.4,0.6] (0.6,0.8] (0.8,1] (1,+∞)

Table 4

Classification of agricultural green total factor productivity in 31 provinces (municipalities and autonomous regions) in China"

地区
Region
低水平
Low level
中等水平
Medium level
中高水平
Middle and high level
高水平
High level
东部地区
Eastern region
河北Hebei 北京Beijing 海南Hainan
江苏Jiangsu 天津Tianjin
福建Fujian 辽宁Liaoning
山东Shandong 上海Shanghai
浙江Zhejiang
广东Guangdong
中部地区
Midland region
安徽Anhui 山西Shanxi 吉林Jilin
江西Jiangxi 黑龙江Heilongjiang
河南Henan
湖北Hubei
湖南Hunan
西部地区
Western region
广西Guangxi 内蒙古Neimenggu 贵州Guizhou
重庆Chongqing 陕西省Shaanxi 西藏Xizang
四川 Sichuan 青海省 Qinghai
云南 Yunnan 宁夏Ningxia
甘肃 Gansu
新疆 Xinjiang

Fig. 2

Changes of ML index and decomposition value of agricultural green total factor productivity in China from 2000 to 2021"

Table 5

Average value of agricultural green total factor productivity ML and decomposition value of 31 provinces (municipalities and autonomous regions) in China from 2000 to 2021"

区域
Region
省份
Province
ML指数效率值
ML exponential efficiency value
EC指数效率值
EC exponential efficiency value
TC指数效率值
TC exponential efficiency value
东部地区
Eastern region
北京 Beijing 1.712 5 1.423 2 1.305 7
天津 Tianjin 1.512 7 0.984 6 1.500 7
河北 Hebei 1.357 5 1.049 3 1.277 9
辽宁 Liaoning 1.526 7 0.944 4 1.605 3
上海 Shanghai 1.756 8 0.870 0 2.093 9
江苏 Jiangsu 1.319 2 1.076 0 1.253 6
浙江 Zhejiang 1.553 9 1.010 6 1.522 5
福建 Fujian 1.247 3 1.154 7 1.068 5
山东 Shandong 1.426 5 0.976 3 1.448 6
广东 Guangdong 1.353 6 1.136 8 1.190 5
海南 Hainan 0.853 7 0.729 7 1.201 8
均值 Mean 1.420 0 1.032 3 1.406 3
中部地区
Midland region
山西 Shanxi 1.373 9 1.137 0 1.240 7
吉林 Jilin 1.431 5 1.035 2 1.378 3
黑龙江 Heilongjiang 1.505 3 1.378 9 1.140 8
安徽 Anhui 1.228 1 0.947 1 1.308 1
江西 Jiangxi 1.152 9 0.808 2 1.505 8
河南 Henan 1.476 0 1.265 0 1.168 0
湖北 Hubei 1.359 3 1.053 9 1.330 4
湖南 Hunan 1.151 9 0.851 7 1.452 8
均值 Mean 1.334 9 1.059 6 1.059 6
西部地区
Western region
内蒙古 Neimenggu 1.108 4 0.809 5 1.385 6
广西 Guangxi 1.281 6 1.146 2 1.115 6
重庆 Chongqing 1.220 5 1.213 1 1.016 2
四川 Sichuan 1.239 2 0.881 9 1.476 1
贵州 Guizhou 0.828 9 0.942 3 0.881 1
云南 Yunnan 1.306 2 1.043 9 1.235 9
西藏 Xizang 0.402 2 0.780 3 0.536 2
陕西 Shaanxi 1.463 3 1.164 8 1.263 1
甘肃 Gansu 1.525 7 1.275 9 1.178 7
青海 Qinghai 1.021 6 0.903 2 1.126 4
宁夏 Ningxia 1.392 6 0.994 9 1.441 1
新疆 Xinjiang 1.313 8 0.875 8 1.606 0
均值 Mean 1.175 3 1.002 7 1.188 5

Table 6

Variable explanation and explanation"

变量类型
Variable type
变量名称
Variable name
变量符号
Variable symbol
变量解释
Interpretation of variable
被解释变量
Dependent variable
农业绿色全要素生产率
Agricultural green total factor productivity
GTFP SBM-ML模型测算效率值
SBM-ML model calculates efficiency values
农业绿色技术进步
Progress in green agricultural technology
TC SBM-ML模型测算TC值累乘
SBM-ML model calculates TC value accumulation
农业绿色技术效率
Agricultural green technology efficiency
EC SBM-ML模型测算EC值累乘
SBM-ML model calculates EC value accumulation
解释变量
Explanatory variable
年龄结构
Age structure
lnx1 农村少儿抚养比
Rural children’s dependency ratio
lnx2 农村老年抚养比
Rural elderly dependency ratio
性别结构
Gender structure
lnx3 农村人口性别比
Gender ratio of rural population
家庭结构
Family structure
lnx4 农村平均家庭户规模
Average household size in rural areas
消费结构
Consumption structure
lnx5 农村居民家庭恩格尔系数
Engel’s coefficient of rural households
文化结构
Culture structure
lnx6 农村人口平均受教育年限
The average education years of rural population
就业结构
Employment structure
lnx7 第一产业从业人数占比
The proportion of employees in the primary industry
控制变量
Control variable
对外开放程度
Extent of openness to the outside world
lncon1 地区进出口总额占地区生产总值比重
The proportion of total regional imports and exports to regional GDP
财政支农水平
Financial support for agriculture level
lncon2 财政涉农支出占总财政支出比重
The proportion of fiscal agricultural expenditure to total fiscal expenditure
城乡收入差距
Income gap between urban and rural areas
lncon3 农村居民与城镇居民家庭人均纯收入比值
The ratio of per capita net income between rural and urban households
农村经济发展水平
Rural economic development level
lncon4 人均农林牧渔总产值的对数
The logarithm of the per capita total output value of agriculture, forestry, animal husbandry, and fishery
农业受灾率
Agricultural disaster rate
lncon5 农业受灾面积占农作物总播种面积比重
The proportion of agricultural disaster affected area to the total sowing area of crops
农业种植结构
Agricultural planting structure
lncon6 粮食播种面积占农作物播种面积比重
The proportion of grain sowing area to crop sowing area

Table 7

Descriptive statistics of variables"

变量类型
Variable type
变量符号
Variable symbol
样本量
Number of samples
平均值
Average value
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
被解释变量
Dependent variable
GTFP 682 0.610 0 0.210 0 0.270 0 2.200 0
TC 682 1.030 0 0.240 0 0.480 0 2.330 0
EC 682 1.290 0 0.480 0 0.330 0 3.960 0
解释变量
Explanatory variables
lnx1 682 0.290 0 0.090 0 0.060 0 0.540 0
lnx2 682 0.150 0 0.060 0 0.060 0 0.460 0
lnx3 682 1.060 0 0.040 0 0.930 0 1.320 0
lnx4 682 3.350 0 0.660 0 0.470 0 8.770 0
lnx5 682 0.400 0 0.090 0 0.240 0 0.790 0
lnx6 682 7.260 0 0.940 0 2.240 0 9.660 0
lnx7 682 5.860 0 0.590 0 1.320 0 7.620 0
控制变量
Control variable
lncon1 682 0.300 0 0.360 0 0.010 0 1.710 0
lncon2 682 0.090 0 0.050 0 0.010 0 0.200 0
lncon3 682 0.370 0 0.070 0 0.180 0 0.540 0
lncon4 682 8.730 0 0.590 0 7.230 0 10.250 0
lncon5 682 0.220 0 0.160 0 0.000 0 0.940 0
lncon6 682 0.650 0 0.130 0 0.330 0 0.970 0

Table 8

Regression estimation results of the impact of rural population structure on agricultural green total factor productivity"

变量
Variable
模型I
Model I
模型II
Model II
模型III
Model III
模型IV
Model IV
模型V
Model V
模型VI
Model VI
模型VII
Model VII
lnx1 -0.285***
(0.059 2)
-0.285***
(0.059 5)
-0.285***
(0.057 6)
-0.260***
(0.058 2)
-0.255***
(0.058 5)
-0.256***
(0.058 2)
-0.266***
(0.057 2)
lnx2 0.055 4
(0.050 6)
0.054 8
(0.050 9)
0.073 1
(0.049 4)
0.052 9
(0.049 9)
0.042 3
(0.051 2)
0.052 5
(0.051 1)
-0.007 9
(0.051 7)
lnx3 -1.180***
(0.236 0)
-1.179***
(0.236 0)
-1.149***
(0.229 0)
-1.221***
(0.230 0)
-1.141***
(0.246 0)
-1.108***
(0.245 0)
-1.247***
(0.242 0)
lnx4 0.022 0
(0.037 3)
0.022 2
(0.037 3)
0.003 7
(0.036 3)
0.011 5
(0.036 3)
0.009 7
(0.036 3)
0.005 3
(0.036 2)
0.003 6
(0.035 5)
lnx5 -0.596***
(0.092 0)
-0.596***
(0.092 2)
-0.709***
(0.091 0)
-0.738***
(0.091 4)
-0.702***
(0.099 5)
-0.703***
(0.099 0)
-0.759***
(0.097 9)
lnx6 -1.214***
(0.183 0)
-1.211***
(0.186 0)
-1.196***
(0.180 0)
-1.086***
(0.185 0)
-1.068***
(0.186 0)
-1.076***
(0.185 0)
-0.989***
(0.182 0)
lnx7 0.087 1
(0.102 0)
0.087 1
(0.102 0)
0.042 5
(0.098 7)
0.032 2
(0.098 3)
0.031 8
(0.098 4)
0.034 4
(0.097 9)
0.034 5
(0.096 1)
0.002 1
(0.020 0)
-0.007 1
(0.019 5)
0.009 3
(0.020 5)
0.010 1
(0.020 5)
0.011 5
(0.020 4)
0.012 7
(0.020 0)
lncon1 -0.193***
(0.029 9)
-0.170***
(0.031 3)
-0.173***
(0.031 4)
-0.160***
(0.031 6)
-0.153***
(0.031 1)
lncon3 -0.250**
(0.099 9)
-0.268***
(0.102 0)
-0.290***
(0.102 0)
-0.243**
(0.100 0)
lncon4 0.317 0
(0.348 0)
0.264 0
(0.347 0)
0.320 0
(0.341 0)
lncon5 -0.0262***
(0.009 7)
-0.0260***
(0.009 5)
lncon6 0.406***
(0.083 0)
系数
Coefficient
0.771***
(0.283 0)
0.768***
(0.284 0)
0.031 9
(0.298 0)
-0.325 0
(0.330 0)
-1.044 0
(0.856 0)
-0.899 0
(0.853 0)
-1.115 0
(0.839 0)
adj. R2 0.654 0 0.653 0 0.674 0 0.677 0 0.677 0 0.680 0 0.692 0
控制时间
Control time
控制Control 控制Control 控制Control 控制Control 控制Control 控制Control 控制Control
控制省份
Control the provinces
控制Control 控制Control 控制Control 控制Control 控制Control 控制Control 控制Control
样本数
Number of samples
682 682 682 682 682 682 682

Table 9

Regression estimation results of the impact of rural population structure on the decomposition value of agricultural green total factor productivity"

变量
Variable
农业绿色技术效率(EC)
Agricultural green technology efficiency
农业绿色技术进步(TC)
Progress in green agricultural technology
lnx1 -0.285*** (0.062 1) 0.022 7 (0.058 3)
lnx2 0.107* (0.056 1) -0.124** (0.052 7)
lnx3 -0.743*** (0.263 0) -0.535** (0.247 0)
lnx4 0.017 3 (0.038 6) -0.011 7 (0.036 2)
lnx5 -0.405*** (0.106 0) -0.337*** (0.099 8)
lnx6 -0.588*** (0.198 0) -0.419** (0.186 0)
lnx7 0.017 1 (0.104 0) 0.016 2 (0.098 0)
系数 Coefficient -1.653* (0.911 0) 1.099 0 (0.855 0)
控制其他变量 Control for other variables 控制 Control 控制 Control
adj. R2 0.141 0 0.726 0
控制时间 Control time 控制 Control 控制 Control
控制省份 Control the province 控制 Control 控制 Control
样本数 Number of samples 682 682

Table 10

Robustness test results"

变量 Variable 模型X Model X 模型XI Model XI 模型XII Model XII
被解释变量
Dependent variable
农业绿色全要素生产率
Agricultural green total factor productivity
农业绿色技术效率(EC)
Agricultural green technology efficiency
农业绿色技术进步(TC)
Progress in green agricultural technology
lnx1 -0.345*** (0.060 4) -0.344*** (0.064 3) -0.000 6 (0.061 0)
lnx2 0.020 2 (0.053 9) 0.174*** (0.057 5) -0.154*** (0.054 5)
lnx3 -1.195*** (0.248 0) -0.564** (0.264 0) -0.632** (0.251 0)
lnx4 -0.006 2 (0.034 3) 0.011 2 (0.036 6) -0.017 4 (0.034 7)
lnx5 -0.803*** (0.101 0) -0.453*** (0.107 0) -0.350*** (0.102 0)
lnx6 -0.994*** (0.185 0) -0.421** (0.197 0) -0.573*** (0.187 0)
lnx7 0.046 0 (0.093 0) 0.025 2 (0.099 1) 0.020 8 (0.094 0)
系数 Coefficient -1.339 (0.858) -1.790* (0.914) 1.183 (0.867)
控制其他变量
Control for other variables
控制 Control 控制 Control 控制 Control
adj. R2 0.646 0.133 0.622
控制时间 Control time 控制 Control 控制 Control 控制 Control
控制省份 Control the province 控制 Control 控制 Control 控制 Control
样本数 Number of samples 620 620 620

Table 11

Regional regression estimation of the impact of rural population structure on agricultural green total factor productivity"

变量
Variable
全国
The whole country
东部地区
Eastern region
中部地区
Central region
西部地区
Western region
lnx1 -0.266*** (0.057 2) 0.053 0 (0.107 0) -0.314*** (0.066 8) -0.096 9 (0.120 0)
lnx2 -0.007 9 (0.051 7) -0.108 0 (0.110 0) -0.038 5 (0.089 5) 0.041 5 (0.083 7)
lnx3 -1.247*** (0.242 0) -1.754*** (0.371 0) -0.790** (0.368 0) 0.283 0 (0.461 0)
lnx4 0.003 6 (0.035 5) -0.301 0 (0.234 0) 0.066 1 (0.060 7) -0.142 0 (0.093 3)
lnx5 -0.759*** (0.097 9) -1.217*** (0.235 0) -0.901*** (0.110 0) -0.850*** (0.161 0)
lnx6 -0.989*** (0.182 0) -2.152 0 (1.660 0) -0.482* (0.271 0) -1.714*** (0.485 0)
lnx7 0.034 5 (0.096 1) 2.753 0 (1.817 0) -0.050 6 (0.046 6) 1.117 0 (0.699 0)
系数 Coefficient -1.115 0 (0.839 0) -2.273 0 (1.473 0) -0.424 0 (2.388 0) -13.60*** (2.730 0)
控制其他变量
Control for other variables
控制 Control 控制 Control 控制 Control 控制 Control
adj. R2 0.692 0 0.697 0 0.923 0 0.730 0
控制时间Control time 控制 Control 控制 Control 控制 Control 控制 Control
控制省份Control the provinces 控制 Control 控制 Control 控制 Control 控制 Control
样本数Number of samples 682 242 176 264

Table 12

Regional regression estimation of the impact of rural population structure on agricultural green technology efficiency"

变量
Variable
全国
The whole country
东部地区
Eastern region
中部地区
Central region
西部地区
Western region
lnx1 -0.285*** (0.062 1) -0.060 0 (0.112 0) -0.516*** (0.132 0) -0.195 0 (0.120 0)
lnx2 0.107* (0.056 1) -0.080 9 (0.115 0) 0.268 0 (0.178 0) 0.072 1 (0.084 1)
lnx3 -0.743*** (0.263 0) -1.170*** (0.386 0) -1.119 0 (0.730 0) -0.363 0 (0.463 0)
lnx4 0.017 3 (0.038 6) -0.104 0 (0.244 0) 0.216* (0.120 0) 0.033 9 (0.093 7)
lnx5 -0.405*** (0.106 0) -0.254 0 (0.244 0) -1.336*** (0.218 0) -0.390** (0.162 0)
lnx6 -0.588*** (0.198 0) -1.745 0 (1.727 0) -1.111** (0.537 0) -0.060 2 (0.487 0)
lnx7 0.017 1 (0.104 0) 1.554 0 (1.891 0) -0.024 9 (0.092 4) -0.275 0 (0.702 0)
系数 Coefficient -1.653* (0.911 0) -3.046** (1.532 0) -5.128 0 (4.738 0) -12.72*** (2.744 0)
控制其他变量
Control for other variables
控制 Control 控制 Control 控制 Control 控制 Control
adj. R2 0.141 0 0.260 0 0.364 0 0.273 0
控制时间 Control time 控制 Control 控制 Control 控制 Control 控制 Control
控制省份 Control the provinces 控制 Control 控制 Control 控制 Control 控制 Control
样本数 Number of samples 682 242 176 264

Table 13

Regional regression estimation of the impact of rural population structure on agricultural green technology progress"

变量
Variable
全国
The whole country
东部地区
Eastern region
中部地区
Central region
西部地区
Western region
lnx1 0.022 7 (0.058 3) 0.122 0 (0.104 0) 0.176 0 (0.134 0) 0.103 0 (0.127 0)
lnx2 -0.124** (0.052 7) -0.043 6 (0.107 0) -0.250 0 (0.179 0) -0.022 3 (0.088 7)
lnx3 -0.535** (0.247 0) -0.666* (0.360 0) 0.262 0 (0.737 0) 0.692 0 (0.488 0)
lnx4 -0.011 7 (0.036 2) -0.190 0 (0.228 0) -0.160 0 (0.122 0) -0.177* (0.098 9)
lnx5 -0.337*** (0.099 8) -0.963*** (0.228 0) 0.489** (0.220 0) -0.444** (0.171 0)
lnx6 -0.419** (0.186 0) -0.469 0 (1.611 0) 0.839 0 (0.542 0) -1.685*** (0.514 0)
lnx7 0.016 2 (0.098 0) 1.186 0 (1.764 0) -0.023 5 (0.093 4) 1.392* (0.741 0)
系数 Coefficient 1.099 0 (0.855 0) 1.764 0 (1.429 0) 4.153 0 (4.786 0) 0.336 0 (2.894 0)
控制其他变量
Control for other variables
控制 Control 控制 Control 控制 Control 控制 Control
adj. R2 0.726 0 0.691 0 0.800 0 0.758 0
控制时间 Control time 控制 Control 控制 Control 控制 Control 控制 Control
控制省份 Control the provinces 控制 Control 控制 Control 控制 Control 控制 Control
样本数 Number of samples 682 242 176 264
[1]
高杨, 牛子恒. 农业信息化、空间溢出效应与农业绿色全要素生产率: 基于SBM-ML指数法和空间杜宾模型. 统计与信息论坛, 2018, 33(10): 66-75.
GAO Y, NIU Z H. Agricultural informatization, spatial spillover effect and agricultural green total factor productivity: Based on the method of SBM-ML index and spatial Durbin model. Journal of Statistics and Information, 2018, 33(10): 66-75. (in Chinese)
[2]
徐永慧, 尹朝静. 环境规制下中国农业绿色全要素生产率的测算. 统计与决策, 2021, 37(18): 50-54.
XU Y H, YIN C J. Measurement on green total factor productivity of China’s agriculture under environmental regulation. Statistics & Decision, 2021, 37(18): 50-54. (in Chinese)
[3]
葛鹏飞, 王颂吉, 黄秀路. 中国农业绿色全要素生产率测算. 中国人口·资源与环境, 2018, 28(5): 66-74.
GE P F, WANG S J, HUANG X L. Measurement for China’s agricultural green TFP. China Population, Resources and Environment, 2018, 28(5): 66-74. (in Chinese)
[4]
纪成君, 夏怀明. 我国农业绿色全要素生产率的区域差异与收敛性分析. 中国农业资源与区划, 2020, 41(12): 136-143.
JI C J, XIA H M. Study on the impact of agricultural science and technology service on agricultural green total factor productivity in China. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(12): 136-143. (in Chinese)
[5]
沈洋, 周鹏飞. 农业绿色全要素生产率测度及收敛性分析: 基于碳汇和碳排放双重视角. 调研世界, 2022(4): 58-68.
SHEN Y, ZHOU P F. Measurement of agriculture green total factor productivity and convergence analysis-Based on the dual perspective of carbon sinks and carbon emissions. The World of Survey and Research, 2022(4): 58-68. (in Chinese)
[6]
陈芳, 杨梅君. 农产品国际贸易对中国农业绿色全要素生产率的影响. 华南农业大学学报(社会科学版), 2021, 20(5): 94-104.
CHEN F, YANG M J. Influence of international trade in agricultural products on agricultural green total factor productivity in China. Journal of South China Agricultural University (Social Science Edition), 2021, 20(5): 94-104. (in Chinese)
[7]
陈燕翎, 庄佩芬, 彭建平. 吸收能力视角下贸易开放对农业绿色全要素生产率的影响. 东南学术, 2021(1): 181-191.
CHEN Y L, ZHUANG P F, PENG J P. The impact of trade opening on agricultural green total factor productivity from the perspective of absorbing capacity. Southeast Academic Research, 2021(1): 181-191. (in Chinese)
[8]
李晓龙, 冉光和. 农产品贸易提升了农业绿色全要素生产率吗?——基于农村金融发展视角的分析. 北京理工大学学报(社会科学版), 2021, 23(4): 82-92.
LI X L, RAN G H. Does agricultural product trade increase agricultural green total factor productivity? -Analysis based on the perspective of rural financial development. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(4): 82-92. (in Chinese)
[9]
李健旋. 农村金融发展与农业绿色全要素生产率提升研究. 管理评论, 2021, 33(3): 84-95.
LI J X. Rural financial development and the improvement of agricultural green total factor productivity. Management Review, 2021, 33(3): 84-95. (in Chinese)
[10]
王亚飞, 徐铭, 张齐家. 农旅产业协同集聚对农业绿色全要素生产率增长的影响: 作用机理与经验证据. 安徽师范大学学报(人文社会科学版), 2022, 50(4): 143-157.
WANG Y F, XU M, ZHANG Q J. The impact of collaborative agglomeration of agricultural tourism industry on the growth of agricultural green total factor productivity: Mechanism of action and empirical evidence. Journal of Anhui Normal University (Hum & Soc Sci), 2022, 50(4): 143-157. (in Chinese)
[11]
马国群, 谭砚文. 环境规制对农业绿色全要素生产率的影响研究: 基于面板门槛模型的分析. 农业技术经济, 2021(5): 77-92.
MA G Q, TAN Y W. Impact of environmental regulation on agricultural green total factor productivity-Analysis based on the panel threshold model. Journal of Agrotechnical Economics, 2021(5): 77-92. (in Chinese)
[12]
范建双, 高骞, 周琳. 城乡人口老龄化对城镇化的双边效应. 中国人口科学, 2020(2): 69-80.
FAN J S, GAO Q, ZHOU L. Bilateral effects of urban and rural population aging on urbanization. Chinese Journal of Population Science, 2020(2): 69-80. (in Chinese)
[13]
姜常宜, 张怡. 农村人口老龄化、农业生产性服务与农业技术效率. 世界农业, 2022(6): 90-100.
JIANG C Y, ZHANG Y. Rural population aging, agricultural producer services and agricultural technical efficiency. World Agriculture, 2022(6): 90-100. (in Chinese)
[14]
孙中义, 王力, 李兴锋. 人口老龄化、 农业社会化服务与农业高质量发展. 贵州财经大学学报, 2022(3): 37-47.
SUN Z Y, WANG L, LI X F. Population aging, socialized agricultural services and agricultural high quality development. Journal of Guizhou University of Finance and Economics, 2022(3): 37-47. (in Chinese)
[15]
刘成坤. 农村人口老龄化对农业机械化的非线性影响——基于面板门槛模型的实证分析. 湘潭大学学报(哲学社会科学版), 2022, 46(1): 51-57.
LIU C K. The nonlinear impact of rural population aging on agricultural mechanization-An empirical analysis based on the panel threshold model. Journal of Xiangtan University (Philosophy and Social Sciences), 2022, 46(1): 51-57. (in Chinese)
[16]
刘爱梅. 农村空心化对乡村建设的制约与化解思路. 东岳论丛, 2021, 42(11): 92-100.
LIU A M. The restriction of rural hollowing-out on rural construction and its solution. Dongyue Tribune, 2021, 42(11): 92-100. (in Chinese)
[17]
TONE K. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 2001, 130(3): 498-509.
[18]
CHUNG Y H, FÄRE R, GROSSKOPF S. Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 1997, 51(3): 229-240.
[19]
吴传清, 宋子逸. 长江经济带农业绿色全要素生产率测度及影响因素研究. 科技进步与对策, 2018, 35(17): 35-41.
WU C Q, SONG Z Y. Study on the measurement and affecting factors of agricultural green total factor productivity in the Yangtze River economic belt. Science & Technology Progress and Policy, 2018, 35(17): 35-41. (in Chinese)
[20]
肖琴, 周振亚, 罗其友. 长江经济带农业绿色生产效率及其时空分异特征研究. 中国农业资源与区划, 2020, 41(10): 15-24.
XIAO Q, ZHOU Z Y, LUO Q Y. Study on agricultural green production efficiency and its spatial-temporal differentiation characteristics in the Yangtze River economic belt. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(10): 15-24. (in Chinese)
[21]
孙能利, 巩前文, 张俊飚. 山东省农业生态价值测算及其贡献. 中国人口·资源与环境, 2011, 21(7): 128-132.
SUN N L, GONG Q W, ZHANG J B. Calculation of the value of agroecosystems in Shandong Province. China Population, Resources and Environment, 2011, 21(7): 128-132. (in Chinese)
[22]
刘二阳, 胡韵菲, 王雪婷, 尤飞. 中国农业生态价值测算及时空聚类特征. 中国农业资源与区划, 2020, 41(3): 196-202.
LIU E Y, HU Y F, WANG X T, YOU F. Measurement and spatial-temporal clustering characteristics no agricultural ecological value in China. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(3): 196-202. (in Chinese)
[23]
COSTANZA R, D’ARGE R, DE GROOT R, FARBER S, GRASSO M, HANNON B, LIMBURG K, NAEEM S, O’NEILL R V, PARUELO J, RASKIN R G, SUTTON P, VAN DEN BELT M. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387(6630): 253-260.
[24]
谢高地, 鲁春霞, 冷允法, 郑度, 李双成. 青藏高原生态资产的价值评估. 自然资源学报, 2003, 18(2): 189-196.
XIE G D, LU C X, LENG Y F, ZHENG D, LI S C. Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 2003, 18(2): 189-196. (in Chinese)

doi: 10.11849/zrzyxb.2003.02.010
[25]
田云, 张俊飚. 中国农业生产净碳效应分异研究. 自然资源学报, 2013, 28(8): 1298-1309.

doi: 10.11849/zrzyxb.2013.08.003
TIAN Y, ZHANG J B. Regional differentiation research on net carbon effect of agricultural production in China. Journal of Natural Resources, 2013, 28(8): 1298-1309. (in Chinese)

doi: 10.11849/zrzyxb.2013.08.003
[26]
姜松, 周洁, 邱爽. 适度规模经营是否能抑制农业面源污染: 基于动态门槛面板模型的实证. 农业技术经济, 2021(7): 33-48.
JIANG S, ZHOU J, QIU S. Can appropriate scale operation restrain agricultural non-point source pollution? -Empirical study based on dynamic threshold panel model. Journal of Agrotechnical Economics, 2021(7): 33-48. (in Chinese)
[27]
杜红梅, 戴劲. 洞庭湖区农业绿色全要素生产率增长时空特征及影响因素分析. 湖南农业大学学报(社会科学版), 2020, 21(3): 7-16.
DU H M, DAI J. Analysis of the spatiotemporal characteristics and influencing factors of agricultural green total factor productivity growth in Dongting Lake area. Journal of Hunan Agricultural University (Social Sciences Edition), 2020, 21(3): 7-16. (in Chinese)
[28]
张丝雨, 胡伟艳, 赵可, 王立业, 闵敏. 耕地多功能与农业绿色全要素生产率的耦合协调发展研究. 世界农业, 2022(11): 83-97.
ZHANG S Y, HU W Y, ZHAO K, WANG L Y, MIN M. Study on the coupling and coordinated development of multifunctional cultivated land and agricultural green total productivity. World Agriculture, 2022(11): 83-97. (in Chinese)
[29]
郭海红, 张在旭. 新型城镇化对农业绿色全要素生产率的门槛效应. 湖南师范大学社会科学学报, 2019, 48(2): 55-63.
GUO H H, ZHANG Z X. The threshold effect of new urbanization on agricultural green total factor productivity. Journal of Social Science of Hunan Normal University, 2019, 48(2): 55-63. (in Chinese)
[30]
鄢曹政, 殷旅江, 何波. 物流业集聚、空间溢出效应与农业绿色全要素生产率—基于省域数据的实证分析. 中国流通经济, 2022, 36(9): 3-16.
YAN C Z, YIN L J, HE B. Logistics industry agglomeration, spatial spillover effects, and agricultural green total factor productivity: Empirical analysis based on provincial data. China Business and Market, 2022, 36(9): 3-16. (in Chinese)
[31]
庞家幸. 中国农业生态效率研究[D]. 兰州: 兰州大学, 2016.
PANG J X. Study on agricultural ecological efficiency in China[D]. Lanzhou: Lanzhou University, 2016. (in Chinese)
[32]
李露, 徐维祥. 农村人口老龄化效应下农业生态效率的变化. 华南农业大学学报(社会科学版), 2021, 20(2): 14-29.
LI L, XU W X. Change of agricultural ecological efficiency under effect of rural population aging. Journal of South China Agricultural University (Social Science Edition), 2021, 20(2): 14-29. (in Chinese)
[33]
杜丽永, 孟祥海, 沈贵银. 规模经营是否有利于农户化肥减量施用?. 农业现代化研究, 2022, 43(3): 475-483.
DU L Y, MENG X H, SHEN G Y. Does scale operation reduce farmers’ fertilizer application. ? Research of Agricultural Modernization, 2022, 43(3): 475-483. (in Chinese)
[34]
何军, 李庆, 张姝弛. 家庭性别分工与农业女性化: 基于江苏408份样本家庭的实证分析. 南京农业大学学报(社会科学版), 2010, 10(1): 50-56.
HE J, LI Q, ZHANG S C. Family gender division and agriculture feminization—an analysis based on 408 families in Jiangsu Province. Journal of Nanjing Agricultural University (Social Sciences Edition), 2010, 10(1): 50-56. (in Chinese)
[35]
王积龙, 邓雅楠. 基于生态女性主义的农村环保传播性别差异实证研究. 现代传播(中国传媒大学学报), 2021, 43(10): 46-52.
WANG J L, DENG Y N. An empirical study of gender differences in rural environmental communication based on ecological feminism. Modern Communication (Journal of Communication University of China), 2021, 43(10): 46-52. (in Chinese)
[36]
李俊霞. 人口大规模流出对农村家庭结构的影响及对策研究: 基于四川省的数据. 农村经济, 2017(11): 96-102.
LI J X. Study on the influence of mass population outflow on rural family structure and countermeasures-Based on the data of Sichuan Province. Rural Economy, 2017(11): 96-102. (in Chinese)
[37]
周宏春, 史作廷. 双碳导向下的绿色消费:内涵、传导机制和对策建议. 中国科学院院刊, 2022, 37(2): 188-196.
ZHOU H C, SHI Z T. Green consumption under carbon-orientated: Connotation, transmission mechanism and countermeasures. Bulletin of Chinese Academy of Sciences, 2022, 37(2): 188-196. (in Chinese)
[38]
周旭海, 胡霞, 罗崇佳. 非农就业对耕地撂荒的影响: 基于CHFS数据的实证分析. 调研世界, 2022(2): 12-20.
ZHOU X H, HU X, LUO C J. The effect of non-agricultural employment on farmland abandonment-An empirical study based on the data of China household finance survey. The World of Survey and Research, 2022(2): 12-20. (in Chinese)
[39]
畅倩, 张聪颖, 王林蔚, 金博宇, 赵敏娟. 非农就业对黄河流域中上游地区农户种植结构的影响. 中国农村经济, 2021(11): 89-106.
CHANG Q, ZHANG C Y, WANG L W, JIN B Y, ZHAO M J. The impacts of non-agricultural employment on farmers’ planting structure in the middle and upper reaches of the Yellow River Basin. Chinese Rural Economy, 2021(11): 89-106. (in Chinese)
[40]
万晶晶, 钟涨宝. 非农就业、农业生产服务外包与农户农地流转行为. 长江流域资源与环境, 2020, 29(10): 2307-2322.
WAN J J, ZHONG Z B. An empirical study on the impact of non-farm employment and agricultural productive services outsourcing on farmers’ behavior of farmland transfer. Resources and Environment in the Yangtze Basin. 2020, 29(10): 2307-2322. (in Chinese)
[41]
李谷成. 中国农业的绿色生产率革命:1978—2008年. 经济学(季刊), 2014, 13(2): 537-558.
LI G C. The green productivity revolution of agriculture in China from 1978 to 2008. China Economic Quarterly, 2014, 13(2): 537-558. (in Chinese)
[42]
郭华, 岑霞, 罗彤, 张洋. 农村人口结构与金融资源配置的时空耦合水平测度及影响因素研究. 宏观经济研究, 2021(6): 146-160.
GUO H, CEN X, LUO T, ZHANG Y. A study on time-space coupling level measurement and influencing factors of rural population structure and financial resources allocation. Macroeconomics, 2021(6): 146-160. (in Chinese)
[43]
杨明洪, 刘昕禹, 吴晓婷. 中国人口结构对生态效率的影响研究. 当代经济管理, 2022, 44(2): 58-67.
YANG M H, LIU X Y, WU X T. Study on the effect of population structure on ecological efficiency in China. Contemporary Economic Management, 2022, 44(2): 58-67. (in Chinese)
[44]
周颖, 梅旭荣, 杨鹏, 刘静. 绿色发展背景下农业生态补偿理论内涵与定价机制. 中国农业科学, 2021, 54(20): 4358-4369. doi: 10.3864/j.issn.0578-1752.2021.20.010.
ZHOU Y, MEI X R, YANG P, LIU J. Theoretical connotations and pricing mechanisms for agricultural ecological compensation within the context of green development. Scientia Agricultura Sinica, 2021, 54(20): 4358-4369. doi: 10.3864/j.issn.0578-1752.2021.20.010. (in Chinese)
[45]
王昌海. 农户生态保护态度: 新发现与政策启示. 管理世界, 2014(11): 70-79.
WANG C H. Farmers’ attitude towards ecological protection: New discovery and policy enlightenment. Management World, 2014(11): 70-79. (in Chinese)
[1] DENG YuanJian,CHAO Bo. Provincial Agricultural Ecological Efficiency and Its Influencing Factors in China from the Perspective of Grey Water Footprint [J]. Scientia Agricultura Sinica, 2022, 55(24): 4879-4894.
[2] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[3] ZHOU Ying,MEI XuRong,YANG Peng,LIU Jing. Theoretical Connotations and Pricing Mechanisms for Agricultural Ecological Compensation Within the Context of Green Development [J]. Scientia Agricultura Sinica, 2021, 54(20): 4358-4369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!