Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (18): 3768-3775.doi: 10.3864/j.issn.0578-1752.2013.18.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Changes of Related Physiological Characteristics of Cotton Under Salinity Condition and the Construction of the Cotton Water Stress Index

 ZHANG  Lei, ZHANG  Guo-Wei, MENG  Ya-Li, CHEN  Bing-Lin, WANG  You-Hua, ZHOU  Zhi-Guo   

  1. Agronomy College of Nanjing Agricultural University / Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing 210095
  • Received:2013-05-15 Online:2013-09-15 Published:2013-06-24

Abstract: 【Objective】To construct the cotton water stress index (CWSI) and determine the suitable water logistics approach, in order to provide theoretical basis for improving cotton yield and quality under salinity field.【Method】The two-year experiments were conducted with Sumian 12 (salinity-sensitivity) and CCRI-44 (salinity-tolerance) at Pailou experimental station of Nanjing Agricultural University. Seven kinds of salts (NaCl, Na2CO3, NaHCO3, CaCl2, MgCl2, MgSO4, and Na2SO4), were mixed into natural dried, sieved soils at an even molar ratio, forming soils with five levels of salinity, namely, CK (1.25 dS?m-1), 0.35% (5.80 dS?m-1), 0.60% ( 9.61 dS?m-1), 0.85% (13.23 dS?m-1), and 1.00% (14.65 dS?m-1), respectively. The effects of soil salinity rates on the water contents and temperature of cotton functional leaves were studied and quantitative relationships between leaf-air temperature difference and vapor pressure difference was determined.【Result】As the soil salinity rates increasing, the transpiration rate, water content and net photosynthetic rate of functional cotton leaves decreased and the leaf temperature increased. The lower equation of the cotton water stress index was set up in 1.25 dS?m-1 salinity rate (well watered), and the cotton water stress index based on the above lower equation under different salinity rates was constructed.【Conclusion】Comprehensive analysis the relationship between cotton water stress index and leaf water content and net photosynthetic rate under different soil salinity rates, and found that the cotton water stress index is a good indicator to detect cotton water stress in salinity field. So, it could be applied to monitor cotton water stress using cotton water stress index, in order to provide theoretical basis for determine suitable water logistics approach under salinity field.

Key words: cotton (Gossypium hirsutum L.) , soil salinity , physiological index , water stress index

[1]Munns R. Genes and salt tolerance: bringing them together. New Phytologist, 2005, 167: 645-663.

[2]关元秀, 刘高焕, 刘庆生, 叶庆华. 黄河三角洲盐碱地遥感调查研究. 遥感学报, 2001, 5(1): 46-52.

Guan Y X, Liu G H, Liu Q S, Ye Q H. The study of salt-affected soils in the yellow river delta based on remote sensing. Journal of Remote Sensing, 2001, 5 (1): 46-52. (in Chinese)

[3]杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45(5): 837-845.

Yang J S. Development and prospect of the research on salt-affected soils in China. Acta Pedologica Sinica, 2008, 45(5): 837-845. ( in Chinese)

[4]Norbert F T T. Strategies to reduce the impact of salt on crops (rice, cotton and chili) production: A case study of the tsunami-affected area of India. Desalination, 2007, 206: 524-530.

[5]Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resource Research, 1977, 13(1): 651-656.

[6]Idso S B, Jackson R D, Pinter J Jr. Normalizing the stress degree day for environmental variability. Agricultural Meteorology, 1981, 24(1): 45-55.

[7]Stark J C, Wright J L. Relationship between foliage temperature and water stress in potatoes. American Potato Journal, 1985, 62(2): 57-68.

[8]Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the Crop Water Stress Index I. History, theory, and baselines. Journal of Production Agronomy, 1992, 5: 462-466.

[9]Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the Crop Water Stress Index. II. Sampling procedures and interpretation. Journal of Production Agronomy, 1992, 5: 466-475.

[10]Yuan G F, Luo Y, Sun X M, Tang D Y. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agricultural Water Management, 2004, 64(1): 29-40.

[11]Nielsen D C. Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI). Field Crops Research, 1990, 23(2): 103-116.

[12]Emekli Y, Bastug R, Buyuktas D, Emekli N Y. Evaluation of a crop water stress index for irrigation scheduling of Bermudagrass. Agricultural Water Management, 2007, 90(3): 205-212.

[13]Stegman E C, Soderlund M. Irrigation scheduling of spring wheat using infrared thermometry. Transactions of the CSAE, 1992, 35(1): 143-152.

[14]Alderfasi A A, Nielsen D C. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agricultural Water Management, 2001, 47(1): 69-75.

[15]Erdem Y, Arin L, Erdem T, Polat S, Deveci M, Okursoy H, Gultas H T. Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agricultural Water Management, 2010, 98(1): 148-156.

[16]Jackson S H. Relationships between normalized leaf water potential and crop water stress index values for acala cotton. Agricultural Water Management, 1991, 20: 108-118.

[17]李国臣, 于海业, 赵红霞, 马成林. 基于叶片空气温差的温室黄瓜水分胁迫指数的应用分析. 吉林农业大学学报, 2006, 28(4): 469-472.

Li G C, Yu H Y, Zhao H X, Ma C L. Application analysis of water stress index of greenhouse cucumber based on leaf-air temperature difference. Journal of Jilin Agricultural University, 2006, 28(4): 469-472. (in Chinese)

[18]Alves I, Pereira L S. Non-water-stressed baselines for irrigation scheduling with infrared thermometers: A new approach. Irrigation Science, 2000, 19: 101-106.

[19]Al-Faraj A, Meye G E, Horst G L. A crop water stress index for tall fescue (Festuca arundinacea Schreb.) irrigation decision-making -a traditional method. Computers and Electronics in Agriculture, 2001, 31: 107-124.

[20]张国伟, 张雷, 唐明星, 路海玲, 周玲玲, 周治国. 土壤盐分对棉花(Gossypium hirsutum L.)功能叶气体交换参数和叶绿素荧光参数日变化的影响. 应用生态学报, 2011, 22(8): 2045-2053.

Zhang G W, Zhang L, Tang M X, Lu H L, Zhou L L, Zhou Z G. Salt tolerance evaluation of cotton (Gossypium hirsutum L) at its germinating and seedling stages and selection of related indices. Chinese Journal of Applied Ecology, 2011, 22(8): 2045-2053. (in Chinese)

[21]王卫星, 罗锡文, 区颖刚, 洪添胜, 胡洪斌. 基于冠层温度的菜心缺水指数模型初步试验研究. 农业工程学报, 2003, 19(5): 47-50.

Wang W X, Luo X W, Qu Y G, Hong T S, Hu H B. Preliminary research on model for determining crop water stress index of flowering Chinese cabbage based on canopy temperature. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(5): 47-50. (in Chinese)

[22]屈卫群, 王邵华, 陈兵林, 王友华, 周治国. 棉花主茎叶SPAD值与氮素营养诊断研究. 作物学报, 2007, 33(6): 1010-1017.

Qu W Q, Wang S H, Chen B L, Wang Y H, Zhou Z G. SPAD value of cotton leaves on main stem and nitrogen diagnosis for cotton growth. Acta Agronomica Sinica, 2007, 33(6): 1010-1017. (in Chinese)

[23]Kao W Y, Tasi T T, Tasi H C. Response of three Glyeine species to salt stress. Environmental and Experimental Botany, 2006, 56: 120-125.

[24]杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010, 43(8): 1585-1593.

Yang S P, Wei C Z, Liang Y C. Effects of NaCl stress on          the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different Sea Island cotton genotypes. Scientia Agricultura Sinica, 2010, 43(8): 1585-1593. (in Chinese)

[25]杨晓慧, 蒋卫杰, 魏珉, 余宏军. 植物对盐胁迫的反应及其抗盐机理研究进展. 山东农业大学学报:自然科学版, 2006, 37(2): 302-305.

Yang X H, Jiang W J, Wei M, Yu H J. Review on plant response and resistance mechanism to salt stress. Journal of Shandong Agriculture University: Natural Science Edition, 2006, 37(2): 302-305. (in Chinese)

[26]Kluitenberg G J, Biggar J W. Canopy temperature as a measure of salinity stress on sorghum. Irrigation Science, 1992, 13(3): 115-121.

[27]梁银丽, 张成娥. 冠层温度-气温差与作物水分亏缺关系的研究. 生态农业研究, 2000, 8(1): 24-26.

Liang Y L, Zhang C E. The relationship between discrepancy of canopy and air temperature and crop water deficiency. Ecological Agriculture Research, 2000, 8(1): 24-26. (in Chinese)

[28]石培华, 梅旭荣, 冷石林, 杜宝华. 冠层温度与冬小麦农田系统水分状况的关系. 应用生态学报, 1997, 8(3): 332-334.

Shi P H, Mei X R, Leng S L, Du B H. Relationship between canopy temperature and water condition of winter wheat farmland ecosystem. Chinese Journal of Applied Ecology, 1997, 8(3): 332-334. (in Chinese)

[29]黄晓林, 李妍, 李国强. 冠层温度与作物水分状况关系研究进展. 安徽农业科学, 2009(4): 1511-1512.

Huang X L, Li Y, Li G Q. Research advance in relationship between canopy temperature and crop water status. Journal of Anhui Agricultural Sciences, 2009(4): 1511-1512. (in Chinese)

[30]Reginato R J. Field quantification of crop water stress. Transactions of the CSAE, 1983, 25(6): 1651-1655.

[31]袁国富, 罗毅, 孙晓敏, 唐登银. 作物冠层表面温度诊断冬小麦水分胁迫的试验研究. 农业工程学报, 2002, 18(6): 13-17.

Yuan G F, Luo Y, Sun X M, Tang D Y. Winter wheat water stress detection based on canopy surface temperature. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6): 13-17. (in Chinese)

[32]李雪, 顾明, 张晓东, 毛罕平, 左志宇. 基于冠层温度的温室葡萄CWSI模型试验研究. 农机化研究, 2009(2): 129-130.

Li X, Gu M, Zhang X D, Mao H P, Zuo Z Y. Preliminary research on model for determining crop water stress index of grape in a greenhouse based on canopy temperature. Journal of Agriculture Mechanization Research, 2009(2): 129-130. (in Chinese)
[1] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[2] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[3] ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928.
[4] ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
[5] XI Xue,ZHAO GengXing,GAO Peng,CUI Kun,LI Tao. Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum— A Case Study in Kenli District of the Yellow River Delta [J]. Scientia Agricultura Sinica, 2020, 53(24): 5005-5016.
[6] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[7] LI WanPing,LIU Min,WANG JieXing,YAO Heng,CHENG ZhengLong,DOU JunXia,ZHOU XiaoMing,FANG YuLin,SUN XiangYu. Influence of Anti-transpirant on Photosynthesis Characteristic and Qualities of Wines in Hot Climate [J]. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019.
[8] WANG Fei,YANG ShengTian,WEI Yang,YANG XiaoDong,DING JianLi. Influence of Sub-Region Priority Modeling Constructed by Random Forest and Stochastic Gradient Treeboost on the Accuracy of Soil Salinity Prediction in Oasis Scale [J]. Scientia Agricultura Sinica, 2018, 51(24): 4659-4676.
[9] LING BingQi, BAI XingXuan, ZHOU YongBin, WANG ChunXiao, XU ZhaoShi, MA YouZhi, CHEN Ming, ZHANG XiaoHong. Functional Analysis of AtTGA4 Transgenic Wheat Tolerance to Low Phosphorus Stress in Field [J]. Scientia Agricultura Sinica, 2018, 51(12): 2225-2234.
[10] LI Ping, Magzum Nurolla, LIANG ZhiJie, HUANG ZhongDong, QI XueBin. Effects of Canal Well Water Ratios on Root Layer Soil Desalination and Groundwater Hydrochemical Characteristics [J]. Scientia Agricultura Sinica, 2017, 50(3): 526-536.
[11] ZHAO HaiYan, WANG JianShe, LIU LinQiang, CHEN YongQuan, LI MengFei, LU QuanWei, LIU Fang, PENG RenHai. Morphological and Physiological Mechanism of Salt Tolerance in Gossypium barbadense to Salt Stress at Seedling Stage [J]. Scientia Agricultura Sinica, 2017, 50(18): 3494-3505.
[12] ZHAO PeiFang, ZHAO Jun, LIU JiaYong, ZAN FengGang, XIA HongMing, P.A. Jackson, J. Basnayake, N.G. Inman-Bamber, YANG Kun, ZHAO LiPing, QIN Wei, CHEN XueKuan, ZHAO XingDong, FAN YuanHong. Genetic Variation of Four Physiological Indexes as Impacted by Water Stress in Sugarcane [J]. Scientia Agricultura Sinica, 2017, 50(1): 28-37.
[13] MU TingTing, DU HuiLing, ZHANG FuYao, JING XiaoLan, GUO Qi, LI ZhiHua, LIU Zhang, TIAN Gang. Effects of Exogenous Selenium on the Physiological Activity, Grain Selenium Content, Yield and Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2017, 50(1): 51-63.
[14] WANG Xia-1, 2 , 4 , MA Yan-Bin-2, WU Xia-2, SHEN Zhi-Cheng-3, LIN Chao-Yang-3, LI Peng-Bo-2, SUN Xuan-2, WANG Xin-Sheng-2, LI Yan-E-2, LI Gui-Quan-1. Molecular Biology Identification of Transgenic Cotton Lines Expressing Exogenous G10aroA Gene [J]. Scientia Agricultura Sinica, 2014, 47(6): 1051-1057.
[15] WANG Wei-Bo, CUI Hai-Rui, LU Mei-Zhen, SHU Qing-Yao, SHEN Sheng-Quan. Research on Carbon Metabolism Characteristics of Transgenic Bt Rice [J]. Scientia Agricultura Sinica, 2013, 46(8): 1564-1570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!