Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (5): 965-979.doi: 10.3864/j.issn.0578-1752.2024.05.011

• HORTICULTURE • Previous Articles     Next Articles

Light Interception Rate and Canopy Structure Optimization of Korla Fragrant Pear

YAN Pan(), WANG ZhenDong, DENG YongHui, CHEN QiLing(), ZHENG QiangQing   

  1. Institute of Forestry and Horticulture, Xinjiang Academy of Agricultural and Reclamation Science/Xinjiang Production & Construction Corp Key Laboratory of Korla Fragrant Pear Germplasm Innovation and Quality Improvement and Efficiency Increment, Shihezi 832000, Xinjiang
  • Received:2023-08-17 Accepted:2023-11-15 Online:2024-03-01 Published:2024-03-06
  • Contact: CHEN QiLing

Abstract:

【Objective】 This study investigated the canopy structure of five tree shapes of Korla fragrant pears, analyzed the differences in light distribution within different tree shapes, established a daily change model of light interception, calculated the light interception rate, clarified the regulation methods and target parameters of the canopy structure, to provide a reference basis for cultivating high-light-efficiency tree shapes. 【Method】 Korla fragrant pear trees with different shapes were chosen as the test materials, the canopy structural parameters and photosynthetic-effective-radiation (PAR) passing through different tree shapes were measured. Based on a quadrant approach, a three-dimensional space was constructed, the light distribution maps were drawn, an evaluation index system of light interception was established, and the light interception amount and light interception rate were calculated. Through correlation analysis and principal component analysis, the main canopy structure and regulation methods that affect light interception were identified. 【Result】 (1) The ground diameter and average branch diameter of large cylindrical-shaped trees were larger, with main branches with imbalanced branch-to-trunk ratios. The number of branches and branch diameter through the canopy of the cylindrical-shaped trees were more uniform. The number of branches, total length of branches, and average branch length of the narrow cylindrical-shaped trees were significantly lower than those of the cylindrical-shaped trees. The height of trees with the short cylindrical-shaped trees was significantly lower and other parameters were similar to the narrow cylindrical-shaped trees. The ground diameter, average branch length, average branch diameter, average branch angle, and average distance of branches of slender- spindle-shaped trees were significantly lower than those of cylindrical-shaped trees, but the proportion of short branches was significantly larger. (2) The distance from the trunk and height were the main factors which affected the canopy light interception (LI), and the average light interception(ALI) at a distance of 100 cm from the trunk increased significantly, reached 572 μmol·m-2·s-1, which was approximately twice that of the inner chamber. The lighting conditions below 220 cm were poor. The south, north, southeast, and southwest sides were high-light areas, while the west, east, northeast, and northwest sides were low-light areas. The daily variation in ALI can be roughly divided into five periods. (3)As the tree shape became narrower and shorter, the ALI significantly increased in the inner chamber, in each or partial layer, in all or partial directions, and in partial periods. (4) The single-day cumulative light interception (CLI) of slender-spindle-shaped trees was 22.2 mol·m-2, the group CLI was 3 712 mol/667 m2, and the light interception rate (LIR) was 35.6%, which was significantly higher than that of other tree shapes. The proportion of low-light area (PLL) was 50.9%, which was significantly lower than that of other tree shapes. (5) Five canopy structural parameters were significantly positively correlated with the LIR while fifteen canopy structural parameters were significantly negatively correlated. 【Conclusion】 The proportion of short branches is the most important parameter affecting the light interception in Korla fragrant pear trees, while the length of branches is the most important parameter affecting the proportion of low-light area. Control the tree height and canopy width can improve the light interception rate and the uniformity of light distribution. The slender-spindle-shaped canopy has a more uniform light distribution and the highest light interception rate. It can maintain a larger number of branches and a larger proportion of short branches with reduced average branch length to improve the lighting level of the canopy.

Key words: Pyrus sinkiangensis Yu, tree shape, light distribution, light interception, proportion of low light area

Fig. 1

Schematic diagram of pear trees with different canopy shapes A: Large cylindrical (LC); B: Cylindrical (C); C: Narrow cylindrical (NC); D: Short cylindrical (SC); E: Slender spindles (SS)"

Fig. 2

Schematic diagram of measurement point distribution"

Table 1

Branches composition of Korla fragrant pear with different canopy shapes"

树形
Canopy shapes
地径
Diameter
(cm)
树高
Height
(m)
分枝数
Number of branches (No.)
长枝占比
Proportion of long branches (%)
中枝占比
Proportion of middle branches (%)
短枝占比
Proportion of short branches (%)
大圆柱形 LC 10.7±0.1a 3.0±0.1bc 26±5bc 32±19a 39±7bc 29±14b
圆柱形 C 7.8±0.7b 3.2±0.1b 33±2b 22±8ab 44±16bc 34±8b
窄圆柱形 NC 8.8±0.6b 3.2±0.1b 23±3c 7±3b 63±5a 30±6b
矮圆柱形 SC 8.5±1.5b 2.8±0.0c 20±3c 12±7b 55±9ab 34±15b
细长纺锤形 SS 5.7±0.2c 3.7±0.2a 65±7a 8±6b 31±6c 61±8a

Table 2

Main branch parameters of Korla fragrant pear with different canopy shapes"

树形
Canopy shape
枝总长
Total length of branches
(m)
平均枝长
Average branch length
(cm)
平均枝粗
Average diameter
(cm)
枝角
Branch angle
(°)
平均枝间距
Average distance of branches (cm)
大圆柱形 LC 20.3±3.2ab 78±17ab 2.1±0.2b 65±7b 9.6±2.0a
圆柱形 C 27.3±1.9a 82±1a 1.8±0.1c 67±4ab 8.8±1.1a
窄圆柱形 NC 13.9±1.7bc 60±3b 2.3±0.1a 75±4a 10.8±0.9a
矮圆柱形 SC 12.2±1.8c 61±11b 2.3±0.1a 73±3ab 10.8±1.2a
细长纺锤形 SS 27.5±7.9a 42±8c 1.2±0.1d 49±7c 4.9±0.8b

Table 3

Vertical distribution characteristics of main branches of Korla fragrant pear with different canopy shapes"

树形
Canopy shape
分枝数 Branch number (No.) 平均枝长 Average branch length (cm) 平均枝粗 Average branch diameter (cm)
下层
Lower
中层
Middle
上层
Upper
下层
Lower
中层
Middle
上层
Upper
下层
Lower
中层
Middle
上层
Upper
大圆柱形 LC 6±2b 13±2ab 7±1c 95±30a 72±16ab 78±22a 2.8±0.6a 1.8±0.2b 2.0±0.2ab
圆柱形 C 5±1b 12±2bc 16±2b 89±26ab 88±1a 76±10a 2.1±0.1b 1.9±0.1ab 1.6±0.1b
窄圆柱形 NC 6±2b 8±1c 9±1c 68±7ab 61±3b 54±6ab 2.4±0.2ab 2.2±0.1ab 2.3±0.2a
矮圆柱形 SC 7±0b 8±2c 6±3c 69±8ab 64±19b 51±6b 2.4±0.3ab 2.3±0.5a 2.2±0.5a
细长纺锤形 SS 13±2a 18±5a 33±2a 53±21ab 53±12b 33±13b 1.3±0.2c 1.2±0.3c 1.1±0.1c

Table 4

Light distribution characteristics of Korla fragrant pear with different canopy shapes"

因素
Factor
平均光截获量 ALI (μmol·m-2·s-1)
圆柱形C 窄圆柱形NC 矮圆柱形SC 细长纺锤形SS
树形 Canopy shape 375±25C 430±27B 413±25BC 514±31A
高度
Height (cm)
70 137±11Cd 132±12Cd 171±14Bc 276±19Ac
120 151±12Ccd 177±13Cd 227±15Bc 348±22Ac
170 253±18Dcd 301±21Cc 417±25Ab 352±23Bc
220 282±20Dc 364±25Cc 485±28Bb 541±32Ab
270 450±28Cb 641±36Bb 763±42Aa 642±40Bb
320 973±55Aa 966±53Aa —— 925±54Aa
离主干距离
Distance from trunk (cm)
0 237±17Cb 346±21Ab 286±18Bb 360±23Ac
50 315±21Cb 377±25Bb 339±22BCb 485±30Ab
100 572±34Ba 568±34Ba 613±35Ba 698±42Aa
方位
Direction
东北 Northeast 326±22Cbc 377±23Babc 493±27Aab 487±29Abc
东 East 195±14Cc 366±22Abc 262±19Bc 369±23Acd
东南 Southeast 471±28Bab 455±28Bab 470±29Bab 645±38Aab
南 South 566±33Ba 544±32Ba 563±32Ba 755±44Aa
西南 Southwest 414±27Cab 463±29BCab 494±27Bab 602±36Aab
西 West 170±13Cc 286±21ABc 269±17Bc 319±22Ad
西北 Northwest 376±24BCb 468±30Aab 363±22Cbc 414±27Bcd
北 North 479±29Aab 482±31Aab 387±24Babc 521±33Abc
时间
Time
10:00 303±26Bb 319±25Bb 382±28Ab 413±33Ab
12:00 510±29Ca 497±27Ca 603±26Ba 739±40Aa
14:00 507±29Ca 580±34Ba 533±28BCa 832±43Aa
16:00 602±32Ba 616±34Ba 591±32Ba 716±40Aa
18:00 253±21Cb 487±32Aa 304±27Bb 275±24BCc
20:00 72±8BCc 83±9Bc 62±8Cc 109±9Ad

Fig. 3

Diurnal variation of light distribution of Korla fragrant pear with different canopy shapes Note: Red indicates higher LI, black indicates lower LI, and other colors indicate LI is in the middle, in units μmol·m-2·s-1"

Table 5

Diurnal variation model of ALI in Korla fragrant pear with different canopy shapes, CLI, LIR, PLL and Group CLI"

树形
Canopy shape
平均光截获量
Average light interception (t)
R2 累积光截获量
Cumulative light interception (mol·m-2)
光能截获率
Light interception rate (%)
低光区占比
Proportion of low light area (%)
群体CLI
Group CLI (mol/667 m2)
圆柱形 C ALI=-2398.857+419.021t-14.839t2 0.901 16.2±1.1c 24.3±0.5c 69.4±1.2a 2709±182c
窄圆柱形 NC ALI=-2897.143+486.532t-16.777t2 0.951 18.6±1.2b 29.0±0.4b 60.1±1.6c 3108±192b
矮圆柱形 SC ALI=-2102.286+395.277t-14.397t2 0.924 18.2±1.1bc 23.6±0.5c 63.7±1.3b 3032±184bc
细长纺锤形 SS ALI=-3214.286+572.279t-20.518t2 0.902 22.2±1.3a 35.6±0.2a 50.9±2.2d 3712±225a

Fig. 4

The correlation between canopy structure and light interception D: Diameter; H: (Height: N: Number of branches; PL: Proportion of long branches: PM: Proportion of middle branches; PS: Proportion of short branches; TL: Total length of branches; L: Average branch length; AD: Average diameter; A: Branch angle; ADI: Average distance of branches; NL: Branch number of lower; NM: Branch number of middle; NU: Branch number of upper; LL: Branch length of lower; LM: Branch length of middle; LU: Branch length of upper; DL: Branch diameter of lower; DM: Branch diameter of middle; DU: Branch diameter of upper; AL: Branch angle of lower; AM: Branch angle of middle; AU: Branch angle of upper; DIL: Branch distance of lower; DIM: Branch distance of middle; DIU: Branch distance of upper; ALI: Average light interception; CLI: Cumulative light interception; LIR: Light interception rate; PLL: Proportion of low light area. The same as below. ** represent a significant correlation at the level of 0.01 (bilateral), and * represents a significant correlation at the level of 0.05 (bilateral)"

Fig. 5

Principal component analysis of canopy structure parameters"

Table 6

Optimization method of canopy structure"

冠层结构参数
Canopy structure parameters
常数
Constant
系数
Coefficient
R2 最优解
Optimal solution
大圆柱形LC 圆柱形C 窄圆柱形NC 矮圆柱形SC 细长纺锤形SS
参数
Parameters
调控
Regulation
参数
Parameters
调控
Regulation
参数
Parameters
调控
Regulation
参数
Parameters
调控
Regulation
参数
Parameters
调控
Regulation
树高Height (H) -14.845 13.060 0.644 3.4 3 3.2 3.2 2.8 3.7
分枝数Number of branches 18.710 0.243 0.641 46 26 33 23 20 65
长枝占比Proportion of long branches 30.600 -0.232 0.330 3 32 22 7 12 8
中枝占比Proportion of middle branches 31.162 -0.093 0.064 12 39 44 63 55 31
短枝占比Proportion of short branches 18.033 0.235 0.493 51 29 34 30 34 61
枝总长Total length of branches 22.602 0.210 0.093 35.2 20.3 27.3 13.9 12.2 27.5
平均枝长Average branch length 41.731 -0.231 0.589 51 78 82 60 61 42
平均枝粗 Average diameter 41.560 -7.656 0.440 1.5 2.1 1.8 2.3 2.3 1.2
枝角 Branch angle 46.142 -0.293 0.353 55 65 67 75 73 49
平均枝间距 Average distance of branches 39.394 -1.394 0.448 6.7 9.6 8.8 10.8 10.8 4.9
下层枝数 Branch number of lower 18.132 1.159 0.560 10 6 5 6 7 13
中层枝数 Branch number of middle 20.147 0.566 0.238 17 13 12 7 8 18
上层枝数 Branch number of upper 21.122 0.404 0.702 22 7 16 9 6 33
下层平均枝长 Branch length of lower 36.664 -0.131 0.351 51 95 89 68 69 53
中层平均枝长 Branch length of middle 38.581 -0.173 0.288 50 72 88 61 64 53
上层平均枝长 Branch length of upper 37.569 -0.184 0.523 41 78 76 54 51 33
下层平均枝粗 Branch diameter of lower 42.228 -6.922 0.596 1.8 2.8 2.1 2.4 2.4 1.3
中层平均枝粗 Branch diameter of middle 38.681 -6.243 0.304 1.4 1.8 1.9 2.2 2.3 1.2
上层平均枝粗 Branch diameter of upper 36.817 -5.392 0.283 1.3 2 1.6 2.3 2.2 1.1
下层平均枝角 Branch angle of lower 48.578 -0.293 0.488 63 78 79 78 79 55
中层平均枝角 Branch angle of middle 40.139 -0.196 0.208 52 62 74 77 74 51
上层平均枝角 Branch angle of upper 34.508 -0.131 0.110 34 56 59 70 64 45
下层平均枝间距 Branch distance of lower 35.765 -1.069 0.395 5 11 9 8 8 5
中层平均枝间距 Branch distance of middle 34.434 -0.829 0.191 5 8 9 11 12 6
上层平均枝间距 Branch distance of upper 35.612 -0.847 0.406 7 12 9 12 13 5
[1]
LIU S Y, BARET F, ABICHOU M, MANCEAU L, ANDRIEU B, WEISS M, MARTRE P. Importance of the description of light interception in crop growth models. Plant Physiology, 2021, 186(2): 977-997.

doi: 10.1093/plphys/kiab113 pmid: 33710303
[2]
LIU Z, AN L Y, LIN S H, WU T, LI X M, TU J F, YANG F C, ZHU H Y, YANG L, CHENG Y S, QIN Z Q. Comparative physiological and transcriptomic analysis of pear leaves under distinct training systems. Scientific Reports, 2020, 10: 18892.

doi: 10.1038/s41598-020-75794-z pmid: 33144674
[3]
BREEN K C, TUSTIN D S, VAN HOOIJDONK B M, STANLEY C J, SCOFIELD C, WILSON J M, OLIVER M J, DAYATILAKE G A. Use of physiological principles to guide precision orchard management and facilitate increased yields of premium quality fruit. Acta Horticulturae, 2021, 1314: 241-252.
[4]
张玉星, 魏文纪, 张建光, 乔进春, 王国英, 许建锋, 杜国强, 崔惠英, 张江红, 石海燕, 等. 梨省力高效现代栽培模式与技术. 河北农 业大学, 2013-04-24.
ZHANG Y X, WEI W J, ZHANG J G, QIAO J C, WANG G Y, XU J F, DU G Q, CUI H Y, ZHANG J H, SHI H Y, et al. Modern cultivation models and techniques for pears with low effort and high efficiency. Hebei Agricultural University, 2013-04-24. (in Chinese)
[5]
武维华. 植物生理学. 3版. 北京: 科学出版社, 2018.
WU W H. Plant Physiology. 3rd ed. Beijing: Science Press, 2018. (in Chinese)
[6]
GRAPPADELLI L C, LAKSO A N. Is maximizing orchard light interception always the best choice? Acta Horticulturae, 2007, 732: 507-518.
[7]
TUSTIN D S, BREEN K C, VAN HOOIJDONK B M. Light utilisation, leaf canopy properties and fruiting responses of narrow-row, planar cordon apple orchard planting systems-A study of the productivity of apple. Scientia Horticulturae, 2022, 294: 110778.

doi: 10.1016/j.scienta.2021.110778
[8]
ROBINSON T L. Recent advances and future directions in orchard planting systems. Acta Horticulturae, 2007(732): 367-381.
[9]
ZHANG J J, ZHANG Q, WHITING M D. Mapping interception of photosynthetically active radiation in sweet cherry orchards. Computers and Electronics in Agriculture, 2015, 111: 29-37.

doi: 10.1016/j.compag.2014.11.024
[10]
杨馥霞, 乔进春, 张玉星, 朱梅玲. 密植圆柱形梨盛果期树相指标及光照特性分析. 河北农业大学学报, 2013, 36(3): 39-44.
YANG F X, QIAO J C, ZHANG Y X, ZHU M L. Study on the tree-structure indexes and light characteristics of full bearing trees with a pillar system in a high-density pear orchard. Journal of Hebei Agricultural University, 2013, 36(3): 39-44. (in Chinese)
[11]
陈久红, 马建江, 李永丰, 位杰, 王岩, 黄国辉. 香梨不同树形冠层结构、光合特性及产量品质的比较. 河南农业科学, 2021, 50(8): 113-123.
CHEN J H, MA J J, LI Y F, WEI J, WANG Y, HUANG G H. Comparison of canopy structure, photosynthetic characteristics, yield and quality of Korla fragrant pear with different tree shapes. Journal of Henan Agricultural Sciences, 2021, 50(8): 113-123. (in Chinese)
[12]
丁想. 库尔勒香梨纺锤形树形冠层结构评价及关键修剪技术研究[D]. 乌鲁木齐: 新疆农业大学, 2021.
DING X. Evaluation of spindle canopy structure of Korla fragrant pear and study on key pruning techniques[D]. Urumqi: Xinjiang Agricultural University, 2021. (in Chinese)
[13]
董建波. 苹果矮砧密植园个体与群体参数研究[D]. 保定: 河北农业大学, 2010.
DONG J B. Research on individual and group parameters of apple orchard with intensive planting on dwarf rootstock[D]. Baoding: Agricultural University of Hebei, 2010. (in Chinese)
[14]
董然然, 安贵阳, 赵政阳, 梅立新, 李敏敏. 不同树形矮化自根砧苹果的冠内光照及其生长和产量比较. 中国农业科学, 2013, 46(9): 1867-1873. doi: 10.3864/j.issn.0578-1752.2013.09.014.
DONG R R, AN G Y, ZHAO Z Y, MEI L X, LI M M. Comparison of light interception ability and growth and yield of different apple tree shapes on dwarf rootstock. Scientia Agricultura Sinica, 2013, 46(9): 1867-1873. doi: 10.3864/j.issn.0578-1752.2013.09.014. (in Chinese)
[15]
束怀瑞. 苹果标准化生产技术原理与参数. 济南: 山东科学技术出版社, 2015: 139-143.
SHU H R. Apple Standardization the Production Technology of Principles and Parameters. Jinan: Shandong Science & Technology Press, 2015: 139-143. (in Chinese)
[16]
GREEN S, MCNAUGHTON K, WÜNSCHE J N, CLOTHIER B. Modeling light interception and transpiration of apple tree canopies. Agronomy Journal, 2003, 95(6): 1380-1387.

doi: 10.2134/agronj2003.1380
[17]
KAPPEL F, BROWNLEE R. Early performance of ‘conference’ pear on four training systems. HortScience, 2001, 36(1): 69-71.

doi: 10.21273/HORTSCI.36.1.69
[18]
TUSTIN D S, VAN HOOIJDONK B M. Can light interception of intensive apple and pear orchard systems be increased with new approaches to tree design? Acta Horticulturae, 2016, 1130: 139-144.
[19]
STONE C H, CLOSE D C, BOUND S A, HUNT I. Training systems for sweet cherry: Light relations, fruit yield and quality. Agronomy, 2022, 12(3): 643.

doi: 10.3390/agronomy12030643
[20]
ANTHONY B, SERRA S, MUSACCHI S. Optimization of light interception, leaf area and yield in “WA38”: Comparisons among training systems, rootstocks and pruning techniques. Agronomy, 2020, 10(5): 689.

doi: 10.3390/agronomy10050689
[21]
EINHORN T C, TURNER J, LARAWAY D. Effect of reflective fabric on yield of mature ‘d’Anjou’ pear trees. HortScience, 2012, 47(11): 1580-1585.

doi: 10.21273/HORTSCI.50.11.1580
[22]
YANG W W, MA X L, MA D D, SHI J D, HUSSAIN S, HAN M Y, COSTES E, ZHANG D. Modeling canopy photosynthesis and light interception partitioning among shoots in bi-axis and single-axis apple trees (Malus domestica Borkh.). Trees, 2021, 35(3): 845-861.

doi: 10.1007/s00468-021-02085-z
[23]
PENG B, ZHAO X L, WANG Y, LI C H, LI Y X, ZHANG D F, SHI Y S, SONG Y C, WANG L, LI Y, WANG T Y. Genome-wide association studies of leaf angle in maize. Molecular Breeding, 2021, 41(8): 50.

doi: 10.1007/s11032-021-01241-0
[24]
LIU Y, YANG M, YAO C S, ZHOU X N, LI W, ZHANG Z, GAO Y M, SUN Z C, WANG Z M, ZHANG Y H. Optimum water and nitrogen management increases grain yield and resource use efficiency by optimizing canopy structure in wheat. Agronomy, 2021, 11(3): 441.

doi: 10.3390/agronomy11030441
[25]
马建江, 陈久红, 黄国辉. 库尔勒香梨省力化栽培模式树形的培养. 果农之友, 2021(1): 15-16.
MA J J, CHEN J H, HUANG G H. Cultivation of Korla fragrant pear tree in labor-saving cultivation mode. Fruit Growers’ Friend, 2021(1): 15-16. (in Chinese)
[26]
WILLIAMS L J, BUTLER E E, CAVENDER-BARES J, STEFANSKI A, RICE K E, MESSIER C, PAQUETTE A, REICH P B. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecology Letters, 2021, 24(5): 996-1006.

doi: 10.1111/ele.13717 pmid: 33657676
[27]
SCALISI A, MCCLYMONT L, UNDERWOOD J, MORTON P, SCHEDING S, GOODWIN I. Reliability of a commercial platform for estimating flower cluster and fruit number, yield, tree geometry and light interception in apple trees under different rootstocks and row orientations. Computers and Electronics in Agriculture, 2021, 191: 106519.

doi: 10.1016/j.compag.2021.106519
[28]
ANTHONY B M, MINAS I S. Optimizing peach tree canopy architecture for efficient light use, increased productivity and improved fruit quality. Agronomy, 2021, 11(10): 1961.

doi: 10.3390/agronomy11101961
[29]
MUSACCHI S. Physiological basis of pear pruning and light effects on fruit quality. Acta Horticulturae, 2021, 1303: 151-162.
[30]
BÉLAND M, BALDOCCHI D D. Vertical structure heterogeneity in broadleaf forests: effects on light interception and canopy photosynthesis. Agricultural and Forest Meteorology, 2021, 307: 108525.

doi: 10.1016/j.agrformet.2021.108525
[1] CHANG JiaYue, MA XiaoLong, WU YanLi, LI JianMing. Effects of Row Spacing and Irrigation Amount on Canopy Light Interception and Photosynthetic Capacity, Matter Accumulation and Fruit Quality of Tomato [J]. Scientia Agricultura Sinica, 2023, 56(11): 2141-2157.
[2] ZHU TieZhong,KE Jian,YAO Bo,CHEN TingTing,HE HaiBing,YOU CuiCui,ZHU DeQuan,WU LiQuan. Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1553-1564.
[3] LI Jing,WANG HongZhang,XU JiaYi,LIU Peng,ZHANG JiWang,ZHAO Bin,REN BaiZhao. Effects of Different Cultivation Modes on Canopy Structure and Photosynthetic Performance of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(22): 4550-4560.
[4] LI MinJi, ZHANG Qiang, LI XingLiang, ZHOU BeiBei, YANG YuZhang, ZHOU Jia, ZHANG JunKe, WEI QinPing. Effect of Three Different Tree Shapes on Growth, Yield and Fruit Quality of ‘Fuji’ Apple Trees on Dwarfing Interstocks [J]. Scientia Agricultura Sinica, 2017, 50(19): 3789-3796.
[5] CAO YiBing, HUANG ShouBing, WANG YuanYuan, XIA YuQing, MENG QingFeng, TAO HongBin, WANG Pu. Dynamic Simulation of Relationship Between Light Interception and Growth of Maize Population and Its Application [J]. Scientia Agricultura Sinica, 2017, 50(11): 1973-1981.
[6] CUI Liang, SU Ben-ying, YANG Feng, YANG Wen-yu. Relationship Between Light Interception and Light Utilization of Soybean Canopy in Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2015, 48(1): 43-54.
[7] CUI Liang, SU Ben-Ying, YANG Feng, YANG Wen-Yu. Effects of Photo-synthetically Active Radiation on Photosynthetic Characteristics and Yield of Soybean in Different Maize/Soybean Relay Strip Intercropping Systems [J]. Scientia Agricultura Sinica, 2014, 47(8): 1489-1501.
[8] YANG Wei-wei, CHEN Xi-long, LIU Hang-kong, ZHANG Man-rang, ZHANG Dong, HAN Ming-yu. Three-Dimensional Simulation of Canopy Structure and Light Interception for Tall Spindle Shape of Spur ‘Fuji’ Apple with Dwarf Interstock [J]. Scientia Agricultura Sinica, 2014, 47(23): 4680-4694.
[9] DONG Ran-Ran, AN Gui-Yang, ZHAO Zheng-Yang, MEI Li-Xin, LI Min-Min. Comparison of Light Interception Ability and Growth and Yield of Different Apple Tree Shapes on Dwarf Rootstock [J]. Scientia Agricultura Sinica, 2013, 46(9): 1867-1873.
[10] LI Yan-da,TANG Liang,ZHANG Yu-ping,ZHU Xiang-cheng,CAO Wei-xing,ZHU Yan
. Relationship of PAR Interception of Canopy to Leaf Area and Yield in Rice
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3296-3305 .
[11] . Study on Maize leaf morphological modeling and mesh simplification of surface [J]. Scientia Agricultura Sinica, 2007, 40(4): 693-697 .
[12] ,,,,,. Effects of Different Training Systems on the Light Interception Ability and Fruiting of Young Nectarine Trees in Greenhouse [J]. Scientia Agricultura Sinica, 2006, 39(06): 1294- .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!