Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (21): 4272-4287.doi: 10.3864/j.issn.0578-1752.2023.21.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Analysis of the Characteristics and Influencing Factors of Soil Particle Composition in Ningxia

ZHOU Lei1(), QU XiaoLin2, ZHOU Tao3, MA ChangBao2, LI JianBing2, LONG HuaiYu1(), XU AiGuo1, ZHANG RenLian1, LI Ge4   

  1. 1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing 100081
    2 Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125
    3 Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002
    4 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, Henan
  • Received:2022-11-21 Accepted:2022-12-31 Online:2023-11-01 Published:2023-11-06
  • Contact: LONG HuaiYu

Abstract:

【Objective】The aim of this study was to clarify the characteristics and influencing factors of soil particle composition in Ningxia, so as to provide the scientific reference for local land use and agricultural production planning.【Method】Based on the soil particle composition test data at 114 sites in Ningxia, the effects of environmental factors on soil particle composition, the statistical characteristics of soil particle composition, soil texture type, particle size of soil control layer, and the spatial distribution characteristics of soil particle composition were studied.【Result】(1) The content of sand, silt and clay in Ningxia soil were 2.4%-97.2%, 0.8%-86.0% and 0.7%-43.3%, respectively, and the average content were 34.9%, 49.6% and 15.5%, respectively; Soil texture was mainly composed of silty loam (46.5%), sandy loam (17.6%) and loam (13.3%), and the variation of soil texture types was mainly attributed to the change of sand and silt content. (2) A number of environmental factors jointly affect the soil particle composition in Ningxia, and the influential factors were geomorphic factors, parental material type factors, small topographic factors, thermal factors, soil type factors, land use type factors and wind speed factors in turn from large to small. (3) There were 11 types of particle sizes in the control interval, among which loamy (46.5%), clay (19.3%) and sandy (16.7%) were the main ones. (4) It was difficult to develop argic horizon in Ningxia. Among 114 sections, 26 clay particles were consistent with cohesive layer, but only 2 were exact argic horizon. (5) Siltigic epipedon of Ningxia produced obvious texture differentation.【Conclusion】The soil particle composition in Ningxia was mainly sand and silt, while landform and parental material were the most important factors affecting the particle composition.

Key words: soil particle composition, factor analysis, soil texture, diagnosis of argic horizon, siltigic epipedon, Ningxia

Fig. 1

Soil sampling points and elevation distribution map in Ningxia"

Fig. 2

Triangulation of soil particle in Ningxia"

Table 1

Statistical value characteristics of soil particle composition in Ningxia"

土壤层次
Soil layer
粒级
Soil
particle
样本数
Sample number
最小值
Minimum
(%)
最大值
Maximum
(%)
平均值
Mean
(%)
标准差
Standard deviation (%)
极差
Range
(%)
偏度
Skewness
峰度
Kurtosis
变异系数
CV
(%)
K-S检验P值
K-S P value
A
砂粒Sand 114 2.4 97.2 40.3 24.23 94.80 0.42 -0.94 60.17 0.11
粉粒Silt 114 0.8 86.0 46.0 19.22 85.20 -0.31 -0.40 41.83 0.08
黏粒Clay 114 1.2 43.3 13.8 9.98 42.10 1.04 0.35 72.42 0.16
B 砂粒Sand 102 3.9 96.3 34.3 20.90 92.40 1.07 0.70 61.02 0.12
粉粒Silt 102 2.5 78.6 50.3 17.21 76.10 -0.82 0.24 34.19 0.09
黏粒Clay 102 0.7 39.7 15.4 9.22 39.00 0.70 -0.09 59.75 0.13

Table 2

Theoretical model of the semivariance function of ordinary kriging prediction particle composition space and its related parameters"

土壤层次
Soil layer
粒级
Soil particle
理论模型
Theoretical model
块金值
Block gold value (C0)
偏基台值
Partial abutment value(C)
基台值
Abutment value (C0+C)
空间相关度
Spatial relevance C0/(C0+C)
主变程
Main
variable range
A 砂粒Sand 指数模型
Exponential models
395.69 232.86 628.55 0.63 0.57
粉粒 Silt 稳定模型
Stable models
140.04 243.07 383.11 0.37 1.05
黏粒 Clay 三角函数
Trigonometric function
78.73 20.04 98.77 0.80 0.45
B 砂粒 Sand 稳定模型
Stable models
280.95 193.77 474.72 0.59 1.57
粉粒 Silt 指数函数
Exponential models
229.39 85.55 314.94 0.73 1.92
黏粒 Clay 三角函数
Trigonometric function
39.77 33.74 73.51 0.54 0.53

Fig. 3

SLR-OK predicts the spatial distribution of soil particle composition in Ningxia"

Table 3

Analysis of the differences in the composition content of soil samples between different parental material types in Ningxia"

土壤层次
Soil layer
母质类型
Parental material type
样本数
Sample number
砂粒
Sand (%)
粉粒
Silt (%)
黏粒
Clay (%)
A 黄土母质Aeolian parent material 50 40.75a 48.49ab 10.76b
水运积母质 Alluvial and lacustrine parent materials 34 47.28a 40.58b 12.14b
坡、残积母质 Slope and residual parent material 15 42.06a 43.73ab 14.21b
灌淤母质 Irrigation silting parent material 12 17.23b 53.89a 28.88a
B 黄土母质Aeolian parent material 47 34.63ab 53.31a 12.05b
水运积母质 Alluvial and lacustrine parent materials 29 38.59a 45.45a 15.95b
坡、残积母质 Slope and residual parent material 10 32.09ab 51.24a 16.66b
灌淤母质 Irrigation silting parent material 12 21.05b 52.67a 26.28a

Table 4

Analysis of differences in particle composition between different soil types in Ningxia"

土壤层次
Soil layer
土壤类型
Soil group
样本数
Sample number
砂粒
Sand (%)
粉粒
Silt (%)
黏粒
Clay (%)
A 灰钙土Sierozems 31 52.45b 38.97b 8.59de
黄绵土Loessial soils 20 29.78c 58.60ab 11.63bcde
灌淤土Irrigation silting soils 12 17.23c 53.89ab 28.88a
灰褐土Gray-cinnamon soils 10 26.71c 54.05ab 19.24b
潮土Fluvo-aquic soils 9 34.91bc 48.72ab 16.37bcd
黑垆土Black loessial soils 6 24.20c 65.10a 10.70cde
风沙土Aeolian sandy soil 5 77.61a 18.50c 3.89e
盐土 Solonchak 4 28.45c 54.27ab 17.28bc
B 灰钙土Sierozems 30 31.35ab 55.98a 12.68bc
黄绵土Loessial soils 20 34.07ab 51.54a 14.41abc
灌淤土Irrigation silting soils 12 26.89b 50.68a 22.45a
灰褐土Gray-cinnamon soils 10 38.38ab 49.10a 12.51bc
潮土Fluvo-aquic soils 8 34.00ab 44.80a 21.25ab
黑垆土Black loessial soils 6 45.02ab 43.72a 11.27c
风沙土Aeolian sandy soil 4 52.30a 37.45a 10.28c
盐土Solonchak 4 28.58ab 51.55a 19.83abc

Table 5

Difference analysis of soil particle composition content under different landforms in Ningxia"

土壤层次
Soil layer
地貌
Landforms
样本数
Sample number
砂粒含量
Sand (%)
粉粒含量
Silt (%)
黏粒含量
Clay (%)
A 平原Plain 42 38.85ab 43.78ab 17.37a
丘陵Hill 18 50.39a 40.98ab 8.63b
山地Mountain land 41 34.62b 53.05a 12.33ab
风蚀地貌Wind-erosion landform 10 52.45a 35.54b 12.02ab
B 平原Plain 37 31.47b 48.80ab 19.73a
丘陵Hill 19 50.39a 40.28b 9.33b
山地Mountain land 37 27.41b 58.30a 14.29ab
风蚀地貌Wind-erosion landform 5 36.97ab 48.05ab 14.99ab

Table 6

Analysis of the differences in the composition content of soil samples under different small terrains in Ningxia"

土壤层次
Soil layers
地形部位
Terrain
样本数
Sample number
砂粒
Sand (%)
粉粒
Silt (%)
黏粒
Clay (%)
A 坡地Slope-land 59 41.54a 47.11a 11.34a
平地Flat ground 52 39.07a 44.74a 16.18a
B 坡地Slope-land 52 35.75a 51.02a 13.23a
平地Flat ground 46 31.78a 50.33a 17.90a

Table 7

Analysis of the differences in the composition of soil samples under different land use types in Ningxia"

土壤层次
Soil layer
土地利用方式
Land use pattern
样本数
Sample number
砂粒
Sand (%)
粉粒
Silt (%)
黏粒
Clay (%)
A 耕地Farmland 26 26.67a 50.68a 22.65a
荒地Wasteland 82 45.04a 44.41a 10.54b
林地Forestland 3 31.92a 49.09a 18.99ab
B 耕地Farmland 26 26.48a 51.26a 22.26a
荒地Wasteland 70 36.46a 50.69a 12.85b
林地Forestland 2 40.10a 43.61a 16.29ab

Table 8

Correlation analysis of soil particle composition with elevation and meteorological factors in Ningxia"

土壤层次
Soil layer
皮尔逊相关性
Pearson correlation
H
(m)
E
(mm)
AT
(℃)
SH
(h)
RH
(%)
R
(mm)
D
(d)
AAD
(d)
AAT
(℃)
WV
(m.s-1)
A 砂粒含量Sand (%) -0.13 0.33** 0.19* 0.30** -0.30** -0.26** 0.15 0.20* 0.20* 0.06
粉粒含量Silt (%) 0.22* -0.33** -0.26** -0.32** 0.28** 0.30** -0.24** -0.29** -0.27** 0.06
黏粒含量Clay (%) -0.1 -0.18 0.04 -0.13 0.21* 0.05 0.1 0.03 0.03 -0.28**
B 砂粒含量Sand (%) -0.24* 0.38** 0.29** 0.39** -0.32** -0.36** 0.30** 0.27** 0.30** 0.02
粉粒含量Silt (%) 0.37** -0.34** -0.38** -0.40** 0.27** 0.42** -0.43** -0.37** -0.40** 0.17
黏粒含量Clay (%) -0.15 -0.20* 0.08 -0.14 0.24* 0.04 0.13 0.1 0.07 -0.38**

Table 9

Principal component analysis of elevation and meteorological factors on soil particle composition"

初始特征值Initial eigenvalue 提取载荷平方和Extract the sum of squares of the loads
成分
Constituent
总计
Total
方差百分比
Percentage of variance
累积
Cumulative (%)
总计
Total
方差百分比
Percentage of variance
累积
Cumulative (%)
1 7.59 75.88 75.88 7.59 75.88 75.88
2 2.01 20.07 95.95 2.01 20.07 95.95
3 0.33 3.25 99.20
4 0.08 0.80 100.00

Table 10

Composition matrix of elevation and meteorological factors in Ningxia"

成分矩阵 Component matrix 成分1 Constituents1 成分2 Constituents 2
年≥10 ℃的平均天数The average number of days ≥10 ℃ per year 0.988 -0.145
降水量Precipitation -0.979 -0.155
年均温Average annual temperature 0.969 -0.226
年≥10 ℃积温平均值The average accumulated temperature of the annual≥10 ℃ 0.964 -0.208
干燥度Dryness 0.956e -0.093
海拔Elevation -0.923 0.366
年日照时数Annual sunshine hours 0.919 0.366
蒸发量Evaporation 0.787 0.591
相对湿度Relative humidity -0.543 -0.796
风速Wind velocity -0.509 0.780

Table 11

Correlation analysis of heat and wind speed factors on soil particle composition in Ningxia"

土壤层次
Soil layer
皮尔逊相关性
Pearson correlation
热量因素
Heat factor
风速因素
Wind speed factor
A 砂粒平均含量
Average sand content
0.25** 0.21*
粉粒平均含量
Average silt content
-0.35** -0.10
黏粒平均含量
Average clay content
0.06 -0.31**
B 砂粒平均含量
Average sand content
-0.11 -0.27**
粉粒平均含量
Average silt content
-0.03 0.32**
黏粒平均含量
Average clay content
0.30** 0.01

Fig. 4

Prediction of the importance of variables influencing soil particle composition in Ningxia"

[1]
MOHAMMADI M, SHABANPOUR M, MOHAMMADI M H, DAVATGAR N. Characterizing spatial variability of soil textural fractions and fractal parameters derived from particle size distributions. Pedosphere, 2019, 29(2): 224-234.

doi: 10.1016/S1002-0160(17)60425-9
[2]
ZUO F L, LI X Y, YANG X F, WANG Y, MA Y J, HUANG Y H, WEI C F. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow. Journal of Soils and Sediments, 2020, 20(1): 272-283.

doi: 10.1007/s11368-019-02408-1
[3]
ANTINORO C, BAGARELLO V, FERRO V, GIORDANO G, IOVINO M. A simplified approach to estimate water retention for Sicilian soils by the Arya-Paris model. Geoderma, 2014, 213: 226-234.

doi: 10.1016/j.geoderma.2013.08.004
[4]
KOME G K, ENANG R K, TABI F O, YERIMA B P K. Influence of clay minerals on some soil fertility attributes: A review. Open Journal of Soil Science, 2019, 9(9): 155-188.

doi: 10.4236/ojss.2019.99010
[5]
RUEHLMANN J. Soil particle density as affected by soil texture and soil organic matter: 1. Partitioning of SOM in conceptional fractions and derivation of a variable SOC to SOM conversion factor. Geoderma, 2020, 375: 114542.

doi: 10.1016/j.geoderma.2020.114542
[6]
ZHANG J H, LI G D, DING S Y, TIAN H W, REN X J, LIU M, ZHENG Y P. Distribution characteristics of soil particles and their relationships with soil organic carbon components in the alluvial/ sedimentary zone in the lower reaches of the Yellow River. Frontiers in Environmental Science, 2022, 10: 849565.

doi: 10.3389/fenvs.2022.849565
[7]
张永萱, 张光辉, 王志强. 黄土剖面土壤颗粒组成对土壤含水量的影响. 水土保持通报, 2009, 29(6): 6-9, 15.
ZHANG Y X, ZHANG G H, WANG Z Q. Influence of soil particle composition on soil moisture in loess profiles. Bulletin of Soil and Water Conservation, 2009, 29(6): 6-9, 15. (in Chinese)
[8]
WANG J J, HUANG Y F, LONG H Y. Water and salt movement in different soil textures under various negative irrigating pressures. Journal of Integrative Agriculture, 2016, 15(8): 1874-1882.

doi: 10.1016/S2095-3119(15)61209-6
[9]
孙梅, 黄运湘, 孙楠, 徐明岗, 王伯仁, 张旭博. 农田土壤孔隙及其影响因素研究进展. 土壤通报, 2015, 46(1): 233-238.
SUN M, HUANG Y X, SUN N, XU M G, WANG B R, ZHANG X B. Advance in soil pore and its influencing factors. Chinese Journal of Soil Science, 2015, 46(1): 233-238. (in Chinese)

doi: 10.1111/ejs.1995.46.issue-2
[10]
季方, 樊自立, 赵虎. 塔里木盆地冲积新成土土壤质地对土壤性状的影响. 土壤, 1999, 31(3): 126-131.
JI F, FAN Z L, ZHAO H. Influence of soil texture of newly formed alluvial soil on soil properties in Tarim Basin. Soils, 1999, 31(3): 126-131. (in Chinese)
[11]
丁倩. 土壤颗粒组成对生物结皮稳定性的影响及机理[D]. 杨凌: 西北农林科技大学, 2020.
DING Q. Effect of soil particle composition on water-stability of biological soil crust[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[12]
郭梦, 吴克宁, 杜凯闯. 新疆地区盐土在中国土壤系统分类中的归属. 土壤通报, 2020, 51(2): 253-262.
GUO M, WU K N, DU K C. Attribution of saline soils in Xinjiang based on Chinese soil taxonomy. Chinese Journal of Soil Science, 2020, 51(2): 253-262. (in Chinese)
[13]
熊杰, 隋鹏, 石彦琴, 吴雪梅, 张建省, 陈源泉, 高旺盛. 土壤质地对玉米产量的影响. 玉米科学, 2012, 20(1): 128-131.
XIONG J, SUI P, SHI Y Q, WU X M, ZHANG J S, CHEN Y Q, GAO W S. Effects of different soil textures on maize yield. Journal of Maize Sciences, 2012, 20(1): 128-131. (in Chinese)
[14]
REZA S K, NAYAK D C, MUKHOPADHYAY S, CHATTOPADHYAY T, SINGH S K. Characterizing spatial variability of soil properties in alluvial soils of India using geostatistics and geographical information system. Archives of Agronomy and Soil Science, 2017, 63(11): 1489-1498.

doi: 10.1080/03650340.2017.1296134
[15]
EWETOLA E A. Influence of soil texture and compost on the early growth and nutrient uptake of Moringa oleifera Lam. Acta Fytotechnica et Zootechnica, 2019, 22(2): 26-33.

doi: 10.15414/afz.2019.22.02.26-33
[16]
BAI L H, ZHANG H, ZHANG J G, LI X, WANG B, MIAO H Z, ALI SIAL T, DONG Q, FU G J, LI L M. Long-term vegetation restoration increases carbon sequestration of different soil particles in a semi-arid desert. Ecosphere, 2021, 12(11): e03848.
[17]
GAO Z Y, NIU F J, LIN Z J, LUO J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. Catena, 2021, 203: 105373.

doi: 10.1016/j.catena.2021.105373
[18]
李晓佳. 大青山南北坡不同海拔高度表土理化性质研究[D]. 呼和浩特: 内蒙古师范大学, 2008.
LI X J. Research of surface soil physical and chemical characteristics at different altitude in south and north foot of Daqing Mountain[D]. Hohhot: Inner Mongolia Normal University, 2008. (in Chinese)
[19]
LIU Y D, WU X D, WU T H, ZHAO L, LI R, LI W P, HU G J, ZOU D F, NI J, DU Y Z, WANG M J, LI Z H, WEI X H, YAN X C. Soil texture and its relationship with environmental factors on the Qinghai-Tibet Plateau. Remote Sensing, 2022, 14(15): 3797.

doi: 10.3390/rs14153797
[20]
汪建中. 赣东地区土壤颗粒组成的特点. 土壤, 1992, 24(1): 29-32, 40.
WANG J Z. Characteristics of soil particle composition in east Jiangxi Province. Soils, 1992, 24(1): 29-32, 40. (in Chinese)
[21]
田积莹, 黄义端, 雍绍萍. 黄土地区土壤物理性质及与黄土成因的关系. 水土保持研究, 1987(1): 1-12.
TIAN J Y, HUANG Y D, YONG S P. The soil physical properties with relation to the loess genesis in the loess region. Research of Soil and Water Conservation, 1987(1): 1-12. (in Chinese)
[22]
张孝中. 黄土高原土壤颗粒组成及质地分区研究. 中国水土保持, 2002(3): 11-13.
ZHANG X Z. Study on the composition of soil particles and texture zoning of the loess plateau. Soil and Water Conservation in China, 2002(3): 11-13. (in Chinese)
[23]
刘付程, 史学正, 潘贤章, 王洪杰. 苏南典型地区土壤颗粒的空间变异特征. 土壤通报, 2003, 34(4): 246-249.
LIU F C, SHI X Z, PAN X Z, WANG H J. Characteristics of spatial variability of soil granules in a typical area of southern Jiangsu. Chinese Journal of Soil Science, 2003, 34(4): 246-249. (in Chinese)
[24]
曹媛, 孟明, 王磊, 杨新国, 曲文杰. 宁夏中部干旱带天然草地土壤颗粒空间分布特征. 中国水土保持, 2021(2): 56-59.
CAO Y, MENG M, WANG L, YANG X G, QU W J. Spatial distribution characteristics of soil particles in natural grassland in the central arid zone of Ningxia. Soil and Water Conservation in China, 2021(2): 56-59. (in Chinese)
[25]
贺静, 吉力力·阿不都外力, 马龙, Galymzhan SAPAROV, Gulnura ISSANOVA. 锡尔河流域哈萨克斯坦境内农田土壤粒度特征及空间异质性. 干旱区研究, 2022, 39(4): 1282-1292.
HE J, JILILI·ABUDUWAILI, MA L, SAPAROV G, ISSANOVA G. Grain size characteristics and spatial heterogeneity of farmland soils in the Syr Darya River Basin of Kazakhstan. Arid Zone Research, 2022, 39(4): 1282-1292. (in Chinese)
[26]
梁燕菲, 胡辉, 李瑞, 于健龙. 黔中喀斯特地区土壤剖面颗粒组成分析. 农业与技术, 2014, 34(11): 21-22, 30.
LIANG Y F, HU H, LI R, YU J L. Analysis of particle composition of soil profile in central Guizhou Karst area. Agriculture and Technology, 2014, 34(11): 21-22, 30. (in Chinese)
[27]
REZA S K, KUMAR N, RAMACHANDRAN S, MUKHOPADHYAY S, SINGH S K, DWIVEDI B S, RAY S K. Geo-spatial analysis for horizontal and vertical variability of bulk density, particle-size distribution and soil moisture content in Tripura, Northeastern India. Arabian Journal of Geosciences, 2021, 14(24): 2734.

doi: 10.1007/s12517-021-09151-3
[28]
WANG X T, SUN L, ZHAO N N, LI W C, WEI X H, NIU B. Multifractal dimensions of soil particle size distribution reveal the erodibility and fertility of alpine grassland soils in the Northern Tibet Plateau. Journal of Environmental Management, 2022, 315: 115145.

doi: 10.1016/j.jenvman.2022.115145
[29]
申哲, 张认连, 龙怀玉, 王转, 朱国龙, 石乾雄, 喻科凡, 徐爱国. 基于3种空间预测方法的黄土区土壤颗粒组成空间分布研究: 以宁夏海原县为例. 中国农业科学, 2020, 53(18): 3716-3728. doi:10.3864/j.issn.0578-1752.2020.18.008.
SHEN Z, ZHANG R L, LONG H Y, WANG Z, ZHU G L, SHI Q X, YU K F, XU A G. Research on spatial distribution of soil particle size distribution in loess region based on three spatial prediction methods—Taking Haiyuan County in Ningxia as an example. Scientia Agricultura Sinica, 2020, 53(18): 3716-3728. doi:10.3864/j.issn.0578-1752.2020.18.008. (in Chinese)
[30]
DA SILVA CHAGAS C, DE CARVALHO W J, BHERING S B, CALDERANO FILHO B. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena, 2016, 139: 232-240.

doi: 10.1016/j.catena.2016.01.001
[31]
LIU F, ROSSITER D G, SONG X D, ZHANG G L, WU H Y, ZHAO Y G. An approach for broad-scale predictive soil properties mapping in low-relief areas based on responses to solar radiation. Soil Science Society of America Journal, 2020, 84(1): 144-162.

doi: 10.1002/saj2.v84.1
[32]
FORKUOR G, HOUNKPATIN O K L, WELP G, THIEL M. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE, 2017, 12(1): e0170478.
[33]
龙怀玉, 周涛, 曲潇琳. 中国土系志(中西部卷)宁夏卷. 北京: 龙门书局, 2020.
LONG H Y, ZHOU T, QU X L. Chinese Soil Series (Midwest Volume) Ningxia Volume. Beijing: Longmen Book Company, 2020. (in Chinese)
[34]
王吉智. 宁夏土壤. 银川: 宁夏人民出版社, 1990.
WANG J Z. Ningxia Soil. Yinchuan: Ningxia People’s Publishing House, 1990. (in Chinese)
[35]
杨琳, 朱阿兴, 秦承志, 李宝林, 裴韬, 邱维理, 徐志刚. 基于典型点的目的性采样设计方法及其在土壤制图中的应用. 地理科学进展, 2010, 29(3): 279-286.
YANG L, ZHU A X, QIN C Z, LI B L, PEI T, QIU W L, XU Z G. A purposive sampling design method based on typical points and its application in soil mapping. Progress in Geography, 2010, 29(3): 279-286. (in Chinese)

doi: 10.11820/dlkxjz.2010.03.004
[36]
张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012.
ZHANG G L, GONG Z T. Soil Survey Laboratory Methods. Beijing: Science Press, 2012. (in Chinese)
[37]
郭彦彪, 戴军, 冯宏, 卢瑛, 贾重建, 陈冲, 熊凡. 土壤质地三角图的规范制作及自动查询. 土壤学报, 2013, 50(6): 1221-1225.
GUO Y B, DAI J, FENG H, LU Y, JIA C J, CHEN C, XIONG F. Standard mapping of soil textural triangle and automatic query of soil texture classes. Acta Pedologica Sinica, 2013, 50(6): 1221-1225. (in Chinese)
[38]
张世文, 黄元仿, 苑小勇, 王睿, 叶回春, 段增强, 龚关. 县域尺度表层土壤质地空间变异与因素分析. 中国农业科学, 2011, 44(6): 1154-1164. doi:10.3864/j.issn.0578-1752.2011.06.010.
ZHANG S W, HUANG Y F, YUAN X Y, WANG R, YE H C, DUAN Z Q, GONG G. The spatial variability and factor analyses of top soil texture on a County scale. Scientia Agricultura Sinica, 2011, 44(6): 1154-1164. doi:10.3864/j.issn.0578-1752.2011.06.010. (in Chinese)
[39]
刘友兆, 丁瑞兴. 关于淀积粘化作用. 土壤学进展, 1993, 21(4): 18-23, 27.
LIU Y Z, DING R X. On deposition adhesion. Advances in Soil Science, 1993, 21(4): 18-23, 27. (in Chinese)
[40]
曹祥会, 龙怀玉, 周脚根, 邱卫文, 雷秋良, 刘颖, 李军, 穆真. 河北省表层土壤有机碳和全氮空间变异特征性及影响因子分析. 植物营养与肥料学报, 2016, 22(4): 937-948.
CAO X H, LONG H Y, ZHOU J G, QIU W W, LEI Q L, LIU Y, LI J, MU Z. Analysis of spatial variability and influencing factors of topsoil organic carbon and total nitrogen in Hebei Province. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 937-948. (in Chinese)
[41]
REZA S K, NAYAK D C, CHATTOPADHYAY T, MUKHOPADHYAY S, SINGH S K, SRINIVASAN R. Spatial distribution of soil physical properties of alluvial soils: A geostatistical approach. Archives of Agronomy and Soil Sciences, 2016, 62(7): 972-981.
[42]
SEYEDMOHAMMADI J, NAVIDI M N, ESMAEELNEJAD L. Geospatial modeling of surface soil texture of agricultural land using fuzzy logic, geostatistics and GIS techniques. Communications in Soil Science and Plant Analysis, 2019, 50(12): 1452-1464.

doi: 10.1080/00103624.2019.1626870
[43]
SANTRA P, KUMAR M, PANWAR N. Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, 2017, 9: 56-72.

doi: 10.1016/j.geodrs.2017.03.003
[44]
姜坤, 秦海龙, 卢瑛, 贾重建, 刘红宜, 崔启超. 广东省不同母质发育土壤颗粒分布的分形维数特征. 水土保持学报, 2016, 30(6): 319-324.
JIANG K, QIN H L, LU Y, JIA C J, LIU H Y, CUI Q C. Fractal dimension of particle-size distribution for soils derived from different parent materials in Guangdong Province. Journal of Soil and Water Conservation, 2016, 30(6): 319-324. (in Chinese)
[45]
徐加盼, 李继洪, 魏玉杰, 张光辉, 阳邦戈, 蔡崇法. 不同母质类型发育土壤颗粒组成分形特征. 土壤学报, 2020, 57(5): 1197-1205.
XU J P, LI J H, WEI Y J, ZHANG G H, YANG B G, CAI C F. Fractal characteristics of particle composition for soils developed from different parent materials. Acta Pedologica Sinica, 2020, 57(5): 1197-1205. (in Chinese)
[46]
罗丹竹, 金鑫. 坡面土壤颗粒组成对雨强和坡度变化的响应研究. 水利规划与设计, 2021(6): 107-112.
LUO D Z, JIN X. Study on the response of soil particle composition on slope to the change of rainfall intensity and slope. Water Resources Planning and Design, 2021(6): 107-112. (in Chinese)
[47]
钟继洪, 张秉刚, 林美莹, 骆伯胜, 谭军. 广东坡地红壤颗粒组成状况的研究: Ⅱ.土壤颗粒组成的空间分异. 热带亚热带土壤科学, 1998, 7(2): 98-101.
ZHONG J H, ZHANG B G, LIN M Y, LUO B S, TAN J. Rerearch on the characteristics of particle composition of of red soils in Guangdong──ⅱ. The spatial variation of soil particle composition. Ecology and Environmental Sciences, 1998, 7(2): 98-101. (in Chinese)
[48]
杨婷, 景航, 姚旭, 董昌平, 由政, 薛萐. 黄土丘陵不同土地利用方式下土壤颗粒组成及其分形维数特征. 水土保持研究, 2016, 23(3): 1-5, 24.
YANG T, JING H, YAO X, DONG C P, YOU Z, XUE S. Soil particle composition and its fractal dimension characteristics of different land uses in loess hilly region. Research of Soil and Water Conservation, 2016, 23(3): 1-5, 24. (in Chinese)
[49]
张海廷, 时延庆. 山东省不同土地利用方式土壤颗粒组成及其分形维数特征. 水土保持研究, 2018, 25(1): 126-131, 138.
ZHANG H T, SHI Y Q. Soil particle-size distribution and fractal dimension of different land use types in Shandong Province. Research of Soil and Water Conservation, 2018, 25(1): 126-131, 138. (in Chinese)
[50]
颜安, 李周晶, 武红旗, 温鹏飞. 不同耕作年限对耕地土壤质地和有机碳垂直分布的影响. 水土保持学报, 2017, 31(1): 291-295.
YAN A, LI Z J, WU H Q, WEN P F. Effect of cultivation years on vertical distribution of soil texture and organic carbon. Journal of Soil and Water Conservation, 2017, 31(1): 291-295. (in Chinese)
[51]
冯学民, 蔡德利. 土壤温度与气温及纬度和海拔关系的研究. 土壤学报, 2004, 41(3): 489-491.
FENG X M, CAI D L. Soil temperature in relation to air temperature, altitude and latitude. Acta Pedologica Sinica, 2004, 41(3): 489-491. (in Chinese)
[52]
李新华. 影响新疆南部地区环境变化的因素分析. 干旱区研究, 2012, 29(3): 534-540.
LI X H. Analyses on factors affecting ecological environment change in south Xinjiang. Arid Zone Research, 2012, 29(3): 534-540. (in Chinese)
[53]
张之一, 辛刚. 黑龙江省土壤温度与气温和纬度及海拔的相关关系//中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会文集(面向农业与环境的土壤科学专题篇), 2004: 341-344.
ZHANG Z Y, XIN G. Correlation between soil temperature and air temperature, latitude and altitude in Heilongjiang Province//The 10th National Geological Society of China Collected Papers of the General Assembly and the Fifth Cross Strait Symposium on Soil and Fertilizer (Special Topics on Soil Science for Agriculture and Environment), 2004: 341-344. (in Chinese)
[54]
韩春兰, 余无忌, 刘金宝, 付小梅, 赵丽婷. 中国年均地温的估算方法研究. 土壤学报, 2017, 54(2): 354-366.
HAN C L, YU W J, LIU J B, FU X M, ZHAO L T. Methods for estimation of mean annual soil temperature in China. Acta Pedologica Sinica, 2017, 54(2): 354-366. (in Chinese)
[55]
康婷, 夏孟瑶. 新疆地区降水量与气温、海拔的空间关系分析. 重庆理工大学学报(自然科学), 2017, 31(7): 119-123.
KANG T, XIA M Y. Spatial relationship analysis on temperature, altitude and precipitation in Xinjiang region. Journal of Chongqing University of Technology (Natural Science), 2017, 31(7): 119-123. (in Chinese)
[56]
张甘霖, 王秋兵, 张凤荣, 吴克宁, 蔡崇法, 章明奎, 李德成, 赵玉国, 杨金玲. 中国土壤系统分类土族和土系划分标准. 土壤学报, 2013, 50(4): 826-834.
ZHANG G L, WANG Q B, ZHANG F R, WU K N, CAI C F, ZHANG M K, LI D C, ZHAO Y G, YANG J L. Criteria for establishment of soil family and soil series in Chinese soil taxonomy. Acta Pedologica Sinica, 2013, 50(4): 826-834. (in Chinese)
[57]
祝迎春. 二阶聚类模型及其应用. 市场研究, 2005(1): 40-42.
ZHU Y C. Twostep cluster model and its application. Marketing Research, 2005(1): 40-42. (in Chinese)
[58]
王吉智. 宁夏引黄灌区的灌淤土. 土壤学报, 1984, 21(4): 434-437.
WANG J Z. Irrigating warped soil in irrigation area of the Yellow River in Ningxia autonomous region. Acta Pedologica Sinica, 1984, 21(4): 434-437. (in Chinese)
[59]
史成华, 龚子同. 我国灌淤土的形成和分类. 土壤学报, 1995, 32(4): 437-448.
SHI C H, GONG Z T. Formation and classification of warplc soils in China. Acta Pedologica Sinica, 1995, 32(4): 437-448. (in Chinese)
[1] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[2] LI HongYan,XUE Jun,WANG YongHong,WANG KeRu,ZHAO RuLang,MING Bo,ZHANG ZhenTao,ZHANG WenJie,LI ShaoKun. Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia [J]. Scientia Agricultura Sinica, 2022, 55(12): 2324-2337.
[3] WANG XiNa,YU JinMing,TAN JunLi,ZHANG JiaQun,WEI ZhaoQing,WANG ZhaoHui. Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903.
[4] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[5] XIN XiaoPing,DING Lei,CHENG Wei,ZHU XiaoYu,CHEN BaoRui,LIU ZhongLing,HE GuangLi,QING GeLe,YANG GuiXia,TANG HuaJun. Biomass Carbon Storage and Its Effect Factors in Steppe and Agro-Pastoral Ecotones in Northern China [J]. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768.
[6] ZENG XiangYuan,ZHAO WuQi,LU Dan,WU Ni,MENG YongHong,GAO GuiTian,LEI YuShan. Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices [J]. Scientia Agricultura Sinica, 2019, 52(4): 725-737.
[7] SHENG YueFan,WANG HaiYan,QIAO HongYuan,WANG Mei,CHEN XueSen,SHEN Xiang,YIN ChengMiao,MAO ZhiQuan. Effects of Different Soil Textures on the Degree of Replanted Disease of Malus hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2019, 52(4): 715-724.
[8] LU Dan,ZHAO WuQi,ZENG XiangYuan,WU Ni,GAO GuiTian,ZHANG QingAn,ZHANG BaoShan,LEI YuShan. The Correlation Between the Stress Relaxation Characteristics and the Quality of ‘Haiwode’ Kiwifruit [J]. Scientia Agricultura Sinica, 2019, 52(14): 2548-2558.
[9] KUANG LiXue, NIE JiYun, LI ZhiXia, GUAN DiKai, WU YongLong, YAN Zhen, CHENG Yang. Factor Analysis and Cluster Analysis of Mineral Elements Contents in Different Apple Varieties [J]. Scientia Agricultura Sinica, 2017, 50(14): 2807-2815.
[10] ZHAO JianHua, SHU XiaoYing, LI HaoXia, ZHENG HuiWen, YIN Yue, AN Wei, WANG YaJun. Analysis and Comprehensive Evaluation of the Quality of Wolfberry (Lycium L.) Fresh Fruits with Different Fruit Colors [J]. Scientia Agricultura Sinica, 2017, 50(12): 2338-2348.
[11] REN XiaoLi, LIU AoXing, LI Xiang, ZHANG Xu, WANG YaChun, SHAO HuaiFeng, QIN ChunHua, WANG Yu, WEN Wan, ZHANG ShengLi. Genetic Parameters Estimation of Test Day Milk Yield in Holstein Heifers in Ningxia Using a Random Regression Test-Day Model [J]. Scientia Agricultura Sinica, 2017, 50(10): 1885-1892.
[12] XIAO Jing, XU Hu, CAI AnDong, HUANG Min, ZHANG Qi, SUN Nan, ZHANG WenJu, XU MingGang. A Meta-Analysis of Effects of Biochar Properties and Management Practices on Crop Yield [J]. Scientia Agricultura Sinica, 2017, 50(10): 1827-1837.
[13] Lü Jian, LIU Xuan, BI Jin-feng, ZHOU Lin-yan, WU Xin-ye. Research on the Quality Evaluation for Peach and Nectarine Chips by Explosion Puffing Drying [J]. Scientia Agricultura Sinica, 2016, 49(4): 802-812.
[14] ZHONG Shou-qin, LIU Bo, WEI Chao-fu, HU Fei-nan. The Rock Fragments (<2 mm) and Their Action Mechanism on the Shear Strength of Purple Mudstone-Developed Soils [J]. Scientia Agricultura Sinica, 2015, 48(23): 4846-4858.
[15] ZHENG Li-jing,NIE Ji-yun,LI Ming-qiang,KANG Yan-ling,KUANG Li-xue,YE Meng-liang. Study on Screening of Taste Evaluation Indexes for Apple [J]. Scientia Agricultura Sinica, 2015, 48(14): 2796-2805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!