Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3905-3916.doi: 10.3864/j.issn.0578-1752.2023.19.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Effect of Porcine ECR1-Like Immune Adhesion on PAMs Capturing GFP-Escherichia coli

ZHANG Zheng1(), LING XiaoYa1, FAN KuoHai2, SUN Na1, SUN PanPan1, SUN YaoGui1, LI HongQuan1, YIN Wei1()   

  1. 1 Shanxi Key Laboratory for Modernization of TCVM/College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 Shanxi Key Laboratory for Modernization of TCVM/Animal Experimental Center, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2022-11-26 Accepted:2023-08-04 Online:2023-10-01 Published:2023-10-08
  • Contact: YIN Wei

Abstract:

【Objective】The aim of this study was to investigate whether the immune adherence function of porcine erythrocyte complement receptor type 1-like (ECR1-like) could promote porcine alveolar macrophages (PAMs) to capture sensitized genetic engineering bacteria GFP-E. coli, in order to explain the molecular mechanism of porcine erythrocyte immunity and its role in innate immunity. 【Method】The level of GFP-E. coli captured by PAMs was detected by flow cytometry, colony plate counting and RT-PCR, and the effect of porcine ECR1-like immune adherence on the capture of GFP-E. coli by PAMs was analyzed. Flow cytometry and cellular immunofluorescence technique were used to detect the changes of immune adherence function of porcine erythrocytes, and the number of porcine ECR1-like after the sensitized GFP-E. coli with ECR1-like immune adherence was removed by PAMs. 【Result】Flow cytometry showed that the average fluorescence intensity of PAMs in porcine erythrocyte adhesion group was significantly higher than that in blank control group (P<0.001), while the positive rate of PAMs cells in porcine erythrocyte adhesion group was significantly higher than that in blank control group (P<0.05). Colony smear count showed that the capture of GFP-E. coli by PAMs in erythrocyte adhesion group was significantly higher than that in blank control group (P<0.05). RT-PCR showed that the relative quantity of GFP-E. coli in PAMs of erythrocyte adhesion group was significantly higher than that of blank control group (P<0.01). Further blocking CR1-like on the surface of porcine erythrocyte, flow cytometry showed that the average fluorescence intensity of PAMs decreased to 256 301.56±9 208.85 (P<0.001), and the positive cell rate of PAMs decreased to (88.32±0.92)% (P>0.05). Colony count showed that the capture of GFP-E. coli in PAMs decreased to (136 666±8 818) CFU/mL (P<0.05), and RT-PCR showed that the relative quantity of GFP-E. coli in PAMs decreased significantly (P<0.01). Using cell flow and circulation interaction technique, it was found that the average fluorescence intensity of GFP-E. coli sensitized by porcine erythrocyte immune adherence decreased from 2 892.18±47.76 before circulation to 2 407.43±141.78 (P<0.05), and the positive cell rate decreased from (20.58±0.36)% before circulation to (17.39±0.23)% (P<0.05). The adhesion level was significantly lower than that before circulation. Meanwhile, the results of indirect immunofluorescence test showed that the average fluorescence intensity of porcine ECR1-like decreased from 344.33±37.92 before to 291.56±11.99 (P<0.05), and the positive cell rate decreased from (30.20±1.24)% before to (28.27±0.64)% (P<0.05). 【Conclusion】Porcine ECR1-like promoted the capture of sensitized GFP-E.coli by PAMs through its immune adhesion function. After PAMs removed sensitized GFP-E. coli adhered to the surface of porcine erythrocyte, the activity of CR1-like of porcine erythrocyte decreased, and the immune adhesion function decreased too.

Key words: porcine, erythrocyte, PAMs, CR1-like, immune adherence

Table 1

Primer sequences"

基因 Gene 引物序列 Primers sequence(5′-3′)
β-D-galactosidase F: CGTTATGTGATGCTGCACGG
R: CGGATCGTTCGGGTAGTGAG
GAPDH F: TTGGCTACAGCAACAGGGTG
R: CAGGAGATGCTCGGTGTGTT

Fig. 1

Flow cytometry diagram of PAMs positive cell rate and mean fluorescence intensity after blocking porcine ECR1-like activity A: Blank control group; B: Erythrocyte adhesion group; C: ECR1-like blocking group; D: Isotype control group. The same as Figs 2-5"

Table 2

Effect of blocking porcine ECR1-like activity on the rate of positive cells and mean fluorescence intensity of PAMs"

组别 Groups 阳性细胞率 Positive cell rate (%) 平均荧光强度 Mean fluorescence intensity
A(空白对照组Blank cell group) 86.49±1.53 207488.60±1405.65
B(红细胞黏附组Erythrocyte adhesion group) 90.74±1.07 297655.94±14833.96
C(ECR1-like阻断组ECR1-like blocking group) 88.32±0.92 256301.56±9208.85
D(同型对照组Isotype control group) 91.82±3.12 300211.32±8001.76

Fig. 2

One-way ANOVA results of positive cell rate and average fluorescence intensity of PAMs"

Fig. 3

Plate coating of GFP-E. coli captured by PAMs after blocking porcine ECR1-like activity"

Table 3

Effects of blocking porcine ECR1-like activity on the results of GFP-E. coli colony counting captured by PAMs"

组别 Groups CFU (mL)
A(空白对照组Blank cell group) 111666±25927
B(红细胞黏附组Erythrocyte adhesion group) 203333±4713
C(ECR1-like阻断组ECR1-like blocking group) 136666±8818
D(同型对照组Isotype control group) 186666±28284

Fig. 4

One-way ANOVA results of PAMs capture GFP-E. coli"

Fig. 5

One-way ANOVA results of the relative quantity of GFP-E coli captured by PAMs"

Fig. 6

Flow cytometry diagram of the detection of porcine red blood cell immune adhesion levels before and after PAMs removal of sensitized GFP-E. coli Ⅰ: Blank control group, Ⅱ: Test group, Ⅲ: Negative control group. The same as Fig. 7 and Fig. 8"

Table 4

Immunoadhesion positive cell rate and mean fluorescence intensity of porcine erythrocytes before and after removal of PAMs to sensitize GFP-E. coli"

组别
Groups
阳性细胞率
Positive cell rate (%)
平均荧光强度
Mean fluorescence intensity
Ⅰ(空白对照组
Blank control group)
循环前免疫黏附 Pre-circulating immune adhesion 20.06±0.44 2846.64±26.84
循环后免疫黏附 Post-circulatory immune adhesion 19.07±1.32 2729.63±49.82
Ⅱ(试验组
Test group)
循环前免疫黏附 Pre-circulating immune adhesion 20.58±0.36 2892.18±47.76
循环后免疫黏附 Post-circulatory immune adhesion 17.39±0.23 2407.43±141.78
Ⅲ(阴性对照组
Negative control group)
循环前免疫黏附Pre-circulating immune adhesion 20.83±0.23 2835.38±18.99
循环后免疫黏附 Post-circulatory immune adhesion 21.25±0.01 2877.65±19.61

Fig. 7

Comparison of the immune adhesion level (mean fluorescence intensity) of porcine erythrocytes before and after PAMs removal of sensitized GFP-E. coli"

Fig. 8

Comparison of the immune adhesion level (positive cell rate) of porcine erythrocytes before and after PAMs removal of sensitized GFP-E. coli"

Fig. 9

Flow cytometry diagram of porcine ECR1-like quantity level detection before and after removal of sensitized GFP-E. coli by PAMs a: Normal control group, b: Treatment group Ⅰ, c: Treatment group Ⅱ, d: Treatment group Ⅲ, e: Isotype control group, f: Blank cell group. The same as Fig. 10"

Table 5

Porcine ECR1-like positive cell rate and average fluorescence intensity before and after removal of PAMs to sensitize GFP-E. coli"

组别 Groups 阳性细胞率 Positive cell rate (%) 平均荧光强度 Mean fluorescence intensity
a(正常对照组Normal control group) 30.20±1.24 344.33±37.92
b(Ⅰ处理组Treatment group Ⅰ) 29.79±0.21 333.58±15.60
c(Ⅱ处理组Treatment group Ⅱ) 28.27±0.64 291.56±11.99
d(Ⅲ处理组Treatment group Ⅲ) 30.07±1.15 341.49±34.80
e(同型对照组Isotype control group) 15.27±1.91 141.10±10.30
f(空白细胞组Blank cell group) / 37.88±0.33

Fig. 10

Comparison of ECR1-like quantity in porcine after removal of sensitized GFP-E. coli by PAMs"

[1]
SIEGEL I, TIAN L L, GLEICHER N. The red-cell immune system. The Lancet, 1981, 318(8246): 556-559.

doi: 10.1016/S0140-6736(81)90941-7
[2]
JAVA A, LISZEWSKI M K, HOURCADE D E, ZHANG F, ATKINSON J P. Role of complement receptor 1 (CR1; CD35) on epithelial cells: A model for understanding complement-mediated damage in the kidney. Molecular Immunology, 2015, 67(2 Pt B): 584-595.

doi: 10.1016/j.molimm.2015.07.016 pmid: 26260209
[3]
YIN W, CUI J Y, JIANG J B, ZHAO J X, FAN K H, SUN N, WANG Z W, SUN Y G, MA H L, LI H Q. The immune adherence receptor CR1-like existed on porcine erythrocytes membrane. Scientific Reports, 2015, 5: 13290.

doi: 10.1038/srep13290 pmid: 26268676
[4]
HOU Z, YIN W, HAO Z L, FAN K H, SUN N, SUN P P, LI H Q. Molecular simulation study on the interaction between porcine CR1-like and C3b. Molecules, 2023, 28(5): 2183.

doi: 10.3390/molecules28052183
[5]
孙雨晨, 贾瑞璞, 范阔海, 孙娜, 孙耀贵, 孙盼盼, 李宏全, 尹伟. 猪Ⅰ型补体受体与C3b活性片段相互结合的体外检测. 中国农业科学, 2021, 54(19): 4243-4254.

doi: 10.3864/j.issn.0578-1752.2021.19.018
SUN Y C, JIA R P, FAN K H, SUN N, SUN Y G, SUN P P, LI H Q, YIN W. Detection of interaction between porcine type Ⅰ complement receptor and C3b active fragment in vitro. Scientia Agricultura Sinica, 2021, 54(19): 4243-4254. (in Chinese)
[6]
SUN Y G, YIN W, FAN X F, FAN K H, JIANG J B, LI H Q. The cytological observation of immune adherence of porcine erythrocyte. Cell Communication & Adhesion, 2012, 19(5/6): 79-84.
[7]
YIN W, WANG C, FAN K H, SUN N, SUN Y G, LI H Q. In vitro observation: The GFP-E. coli adhering to porcine erythrocytes can be removed by porcine alveolar macrophages. PeerJ, 2019, 7: e6439.

doi: 10.7717/peerj.6439
[8]
BREKKE O L, CHRISTIANSEN D, KISSERLI A, FURE H, DAHL J A, DONVITO B, REVEIL B, LUDVIKSEN J K, TABARY T, MOLLNES T E, COHEN J H M. Key role of the number of complement receptor 1 on erythrocytes for binding of Escherichia coli to erythrocytes and for leukocyte phagocytosis and oxidative burst in human whole blood. Molecular Immunology, 2019, 114: 139-148.

doi: 10.1016/j.molimm.2019.07.014
[9]
LI J, WANG J P, GHIRAN I, CERNY A, SZALAI A J, BRILES D E, FINBERG R W. Complement receptor 1 expression on mouse erythrocytes mediates clearance of Streptococcus pneumoniae by immune adherence. Infection and Immunity, 2010, 78(7): 3129-3135.

doi: 10.1128/IAI.01263-09
[10]
LI J, GLOVER D T, SZALAI A J, HOLLINGSHEAD S K, BRILES D E. PspA and PspC minimize immune adherence and transfer of pneumococci from erythrocytes to macrophages through their effects on complement activation. Infection and Immunity, 2007, 75(12): 5877-5885.

doi: 10.1128/IAI.00839-07 pmid: 17923519
[11]
SALAM K A, WANG R Y, GRANDINETTI T, DE GIORGI V, ALTER H J, ALLISON R D. Binding of free and immune complex-associated hepatitis C virus to erythrocytes is mediated by the complement system. Hepatology, 2018, 68(6): 2118-2129.

doi: 10.1002/hep.30087 pmid: 29742812
[12]
WANG F S, CHU F L, JIN L, LI Y G, ZHANG Z, XU D, SHI M, WU H, MOULDS J M. Acquired but reversible loss of erythrocyte complement receptor 1 (CR1, CD35) and its longitudinal alteration in patients with severe acute respiratory syndrome. Clinical and Experimental Immunology, 2005, 139(1): 112-119.

pmid: 15606620
[13]
PEIRIS J S M, LAI S T, POON L L M, GUAN Y, YAM L Y C, LIM W, NICHOLLS J, YEE W K S, YAN W W, CHEUNG M T, CHENG V C C, CHAN K H, TSANG D N C, YUNG R W H, NG T K, YUEN K Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366): 1319-1325.

pmid: 12711465
[14]
DE OLIVEIRA R B, WANG J P, RAM S, GAZZINELLI R T, FINBERG R W, GOLENBOCK D T. Increased survival in B-cell- deficient mice during experimental cerebral malaria suggests a role for circulating immune complexes. mBio, 2014, 5(2): e00949-e00914.
[15]
陈紫晗, 孙琳琳, 张艺璇, 闫军浩. β-淀粉样蛋白清除障碍在阿尔兹海默症发病中的作用. 生理科学进展, 2019, 50(2): 149-152.
CHEN Z H, SUN L L, ZHANG Y X, YAN J H. The roles of amyloid β-protein clearance impairment in the Alzheimer’s disease. Progress in Physiological Sciences, 2019, 50(2): 149-152. (in Chinese)
[16]
SAWADA T, FUJIMORI D, YAMAMOTO Y. Systemic lupus erythematosus and immunodeficiency. Immunological Medicine, 2019, 42(1): 1-9.

doi: 10.1080/25785826.2019.1628466 pmid: 31204893
[17]
BRUBAKER W D, CRANE A, JOHANSSON J U, YEN K, GARFINKEL K, MASTROENI D, ASOK P, BRADT B, SABBAGH M, WALLACE T L, GLAVIS-BLOOM C, TENNER A J, ROGERS J. Peripheral complement interactions with amyloid β peptide: Erythrocyte clearance mechanisms. Alzheimer’s & Dementia, 2017, 13(12): 1397-1409.
[18]
谷新利, 李宏全, 王俊东, 蒋建军, 陈韩英, 李炳奇, 张建海, 刘振中, 刘红, 罗燕, 邵永斌. 从中药方剂中提取的复合多糖对雏鸡免疫功能的影响. 中国农业科学, 2005, 38(4): 813-820.
GU X L, LI H Q, WANG J D, JIANG J J, CHEN H Y, LI B Q, ZHANG J H, LIU Z Z, LIU H, LUO Y, SHAO Y B. Effects of compound polysaccharide extracted from traditional Chinese medical herbs on the immunity function in chickens. Scientia Agricultura Sinica, 2005, 38(4): 813-820. (in Chinese)
[19]
REINAGEL M L, TAYLOR R P. Transfer of immune complexes from erythrocyte CR1 to mouse macrophages. Journal of Immunology, 2000, 164(4): 1977-1985.

pmid: 10657648
[20]
HEPBURN A L, MASON J C, WANG S, SHEPHERD C J, FLOREY O, HASKARD D O, DAVIES K A. Both Fcgamma and complement receptors mediate transfer of immune complexes from erythrocytes to human macrophages under physiological flow conditions in vitro. Clinical and Experimental Immunology, 2006, 146(1): 133-145.

doi: 10.1111/j.1365-2249.2006.03174.x
[21]
张琪琪, 凌小雅, 孙雨晨, 尹伟, 范阔海, 孙娜, 孙耀贵, 李宏全. 猪红细胞类补体受体Ⅰ型膜结合蛋白的筛选. 中国兽医科学, 2020, 50(1): 42-48.
ZHANG Q Q, LING X Y, SUN Y C, YIN W, FAN K H, SUN N, SUN Y G, LI H Q. Screening of membrane-binding proteins of complement receptor 1-like on porcine erythrocytes. Chinese Veterinary Science, 2020, 50(1): 42-48. (in Chinese)
[22]
张琪琪. 猪红细胞CR1-like膜结合蛋白的检测及鉴定[D]. 太谷: 山西农业大学, 2020.
ZHANG Q Q. Detection and identification of membrane-binding proteins of complement receptor 1-like on porcine erythrocytes[D]. Taigu: Shanxi Agricultural University, 2020. (in Chinese)
[23]
王春, 尹伟, 范阔海, 孙娜, 孙耀贵, 李宏全. 猪肺泡巨噬细胞膜表面类补体受体分子的鉴定. 黑龙江畜牧兽医, 2019(7): 13-17.
WANG C, YIN W, FAN K H, SUN N, SUN Y G, LI H Q. Identification of surface complement receptor molecules in porcine alveolar macrophages. Heilongjiang Animal Science and Veterinary Medicine, 2019(7): 13-17. (in Chinese)
[24]
王春. 猪肺泡巨噬细胞移除红细胞免疫粘附致敏GFP-E.coli的研究[D]. 太谷: 山西农业大学, 2019.
WANG C. Study on porcine alveolar macrophages removing opsonized GFP-E.coli from erythrocytes[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
[25]
凌小雅, 朱乐乐, 孙加乐, 王缘, 张睿玉, 薛晓姝, 尹伟. PAMs移除猪红细胞表面GFP-Escherichia coli的体外观察. 山西农业科学, 2021, 49(9): 1132-1136.
LING X Y, ZHU L L, SUN J L, WANG Y, ZHANG R Y, XUE X S, YIN W. In vitro observation of GFP-Escherichia coli removed from porcine erythrocytes by porcine alveolar macrophages(PAMs). Journal of Shanxi Agricultural Sciences, 2021, 49(9): 1132-1136. (in Chinese)
[26]
RUSSELL B L, GILDENHUYS S. Solubilisation and purification of recombinant bluetongue virus VP7 expressed in a bacterial system. Protein Expression and Purification, 2018, 147: 85-93.

doi: S1046-5928(17)30759-3 pmid: 29551716
[27]
BANEYX F, MUJACIC M. Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 2004, 22(11): 1399-1408.

doi: 10.1038/nbt1029
[28]
崔姣艳. 猪红细胞免疫黏附受体的鉴定与检测[D]. 太谷: 山西农业大学, 2015.
CUI J Y. Identification and detection of porcine erythrocyte immune adhesion receptors[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese)
[29]
LI J, SZALAI A J, HOLLINGSHEAD S K, NAHM M H, BRILES D E. Antibody to the type 3 capsule facilitates immune adherence of pneumococci to erythrocytes and augments their transfer to macrophages. Infection and Immunity, 2009, 77(1): 464-471.

doi: 10.1128/IAI.00892-08 pmid: 19001076
[30]
KAVAI M. Immune complex clearance by complement receptor type 1 in SLE. Autoimmunity Reviews, 2008, 8(2): 160-164.

doi: 10.1016/j.autrev.2008.06.002 pmid: 18602499
[31]
ROCHOWIAK A, NIEMIR Z I. The role of CR1 complement receptor in pathology. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego, 2010, 28(163): 84-88.
[32]
ARORA V, VERMA J, DUTTA R, MARWAH V, KUMAR A, DAS N. Reduced complement receptor 1 (CR1, CD35) transcription in systemic lupus erythematosus. Molecular Immunology, 2004, 41(4): 449-456.

pmid: 15163541
[1] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[2] CHEN Yu,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie,ZHOU GuangHong. Differentiation of Porcine Muscle Stem Cells in Three-Dimensional Hydrogels [J]. Scientia Agricultura Sinica, 2022, 55(22): 4500-4512.
[3] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[4] Qun ZHOU,XiaoFei CHEN,RuiCi KAN,Yu LI,Hui CAO,YanLing PENG,Bin ZHANG. Molecular Epidemiological Investigation of Porcine Group A Rotavirus in Sichuan from 2017 to 2019 [J]. Scientia Agricultura Sinica, 2021, 54(5): 1063-1072.
[5] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[6] SUN YuChen,JIA RuiPu,FAN KuoHai,SUN Na,SUN YaoGui,SUN PanPan,LI HongQuan,YIN Wei. Detection of Interaction Between Porcine Type I Complement Receptor and C3b Active Fragment in Vitro [J]. Scientia Agricultura Sinica, 2021, 54(19): 4243-4254.
[7] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
[8] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[9] ZHONG CuiLi,LI GuoLing,WANG HaoQiang,MO JianXin,QUAN Rong,ZHANG XianWei,LI ZiCong,WU ZhenFang,GU Ting,CAI GengYuan. Optimizing the Electroporation Condition of Porcine Fetal Fibroblasts for Large Plasmid [J]. Scientia Agricultura Sinica, 2019, 52(3): 530-538.
[10] YANG Qiang, XU Pan, JIANG Kai, QIAO ChuanMin, REN Jun, HUANG LuSheng, XING YuYun. Targeted Editing of BMPR-IB Gene in Porcine Fetal Fibroblasts via Lentivirus Mediated CRISPR/Cas9 Technology and Its Effects on Expression of Genes in the BMPs Signaling Pathway [J]. Scientia Agricultura Sinica, 2018, 51(7): 1378-1389.
[11] ZHENG Ming, LI HuaWei, LIU YingYing, WANG YongFen, BIAN ChuanZhou, GUO HongWei. Establishment and Application of Loop-Mediated Indirect PCR Assay Based on Single-Strand Substitution for Detection and Differentiation of PEDV and TGEV [J]. Scientia Agricultura Sinica, 2017, 50(24): 4790-4798.
[12] PENG FuZhi, RAN MaoLiang, WENG Bo, LI Zhi, DONG LianHua, CHEN Bin. Validation of Reference Genes for Quantitative RT-PCR Analysis in Porcine Testis Tissues [J]. Scientia Agricultura Sinica, 2017, 50(15): 3033-3041.
[13] DU Li-li, FAN Shuang-shuang, LI Sai-sai, CHEN Pei-ge, CHEN Lei, SUN Shi-ping, FAN Wen-jie, WANG Jiang, WANG Yue-ying, ZHONG Kai. Cloning and Prokaryotic Expression of Porcine cGAS Gene [J]. Scientia Agricultura Sinica, 2016, 49(9): 1803-1809.
[14] ZHANG Fan-fan, SONG De-ping, ZHOU Xin-rong, HUANG Dong-yan, LI An-qi, PENG Qi, CHEN Yan-jun, WU Qiong, HE Hou-jun, TANG Yu-xin. Establishment and Application of a RT-PCR Assay for Detection of Newly Emerged Porcine Deltacoronavirus [J]. Scientia Agricultura Sinica, 2016, 49(7): 1408-1416.
[15] WANG Ya-xian, YANG Fan, WANG Hua-yan. Expression and Regulation of Sall4 and Screening Core Regulation Region of Sall4 Promoter [J]. Scientia Agricultura Sinica, 2016, 49(1): 176-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!