Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 530-538.doi: 10.3864/j.issn.0578-1752.2019.03.013
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
ZHONG CuiLi1,LI GuoLing1,WANG HaoQiang1,MO JianXin1,QUAN Rong1,ZHANG XianWei2,LI ZiCong1,WU ZhenFang1,2,GU Ting1(),CAI GengYuan1,2(
)
[1] |
RUAN J, LI H, XU K, WU T, WEI J, ZHOU R, LIU Z, MU Y, YANG S, OUYANG H ,CHEN-TSAI R Y, LI K. Highly efficient CRISPR/Cas9-mediated transgene knock in at the H11 locus in pigs. Scientific Reports, 2015,5:14253.
doi: 10.1038/srep14253 pmid: 26381350 |
[2] | 王金霞, 徐影琪, 魏政立, 杨葳, 张梅英, 郑志红 . 一种能实现蛋白可逆表达的敲入载体构建方法. 辽宁农业科学, 2016(4):27-32. |
WANG J X, XU Y Q, WEI Z L, YANG W, ZHANG M Y, ZHENG Z H . A method of constructing a knock-in vector which can achieve reversible protein expression.Liaoning Agricultural Sciences, 2016(4):27-32. (in Chinese) | |
[3] | 张驹 . CRISPR/Cas9系统介导羊MSTN基因敲除和定点整合fat-1基因的研究[D]. 呼和浩特: 内蒙古大学, 2016. |
ZHANG J . Generation of MSTN gene knock-out and fat-1 gene Knock-in goat via CRISPER/CAS9[D]. Huhhot: Inner Mongolia University, 2016. ( in Chinese) | |
[4] |
GUAN L Z, SUN Y P, XI Q Y, WANG J L, ZHOU J Y, SHU G, JIANG Q Y, ZHANG Y L . β-Glucanase specific expression in the parotid gland of transgenic mice. Transgenic Research, 2013,22(4):805-812.
doi: 10.1007/s11248-012-9682-3 pmid: 23328918 |
[5] |
CLARK K J, CARLSON D F, FAHRENKRUG S C . Pigs taking wing with transposons and recombinases. Genome Biology, 2007,8(Suppl 1):S13.
doi: 10.1186/gb-2007-8-s1-s13 pmid: 18047690 |
[6] |
DING S, WU X, LI G, HAN M, ZHUANG Y, XU T . Efficient transposition of the piggyBac(PB) transposon in mammalian cells and mice. Cell, 2005,122(3):473-483.
doi: 10.1016/j.cell.2005.07.013 pmid: 16096065 |
[7] |
LI M A, TURNER D J, NING Z, YUSA K, LIANG Q, ECKERT S, RAD L, FITZGERALD T W, CRAIG N L, BRADLEY A . Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Research, 2011,39(22):e148.
doi: 10.1093/nar/gkr764 pmid: 3239208 |
[8] |
WU S C, MEIR Y J, COATES C J, HANDLER A M, PELCZAR P, MOISYADI S , KAMINSKI J M. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(41):15008-15013.
doi: 10.1073/pnas.0606979103 pmid: 17005721 |
[9] | WILSON M H, COATES C J, GEORGE AL JR . PiggyBac transposon-mediated gene transfer in human cells. Molecular Therapy, 2007,15(1):139-145. |
[10] | 杜新华, 高雪, 张路培, 高会江, 李俊雅, 许尚忠 . Piggybac转座子在牛基因组的整合位点及特征分析. 遗传, 2013,35(6):771-777. |
DU X H, GAO X, ZHANG L P, GAO H J, LI J Y, XU S Z . Integration sites and their characteristic analysis of piggyBac transposon in cattle genome. Hereditas, 2013,35(6):771-777. (in Chinese) | |
[11] |
XIE Z, PANG D, WANG K, LI M, GUO N, YUAN H, LI J, ZOU X, JIAO H, OUYANG H, LI Z, TANG X . Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts Scientific Reports, 2017,7(1):3036.
doi: 10.1038/s41598-017-02785-y pmid: 28596588 |
[12] |
CHU V T, WEBER T, GRAF R, SOMMERMANN T, PETSCH K, SACK U, VOLCHKOV P, RAJEWSKY K , KÜHN R. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnology, 2016,16:4.
doi: 10.1186/s12896-016-0234-4 pmid: 4715285 |
[13] |
WU M, WEI C, LIAN Z, LIU R, ZHU C, WANG H, CAO J, SHEN Y, ZHAO F, ZHANG L, MU Z, WANG Y, WANG X, DU L, WANG C . Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Scientific Reports, 2016,6:24360.
doi: 10.1038/srep24360 pmid: 4827023 |
[14] |
LAI S, WEI S, ZHAO B, OUYANG Z, ZHANG Q, FAN N, LIU Z, ZHAO Y, YAN Q, ZHOU X, LI L, XIN J, ZENG Y, LAI L, ZOU Q . Generation of knock-in pigs carrying oct4-tdtomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS ONE, 2016,11(1). doi: 10.1371/journal.pone.0146562.
doi: 10.1371/journal.pone.0146562 pmid: 26756580 |
[15] | 覃兆鲜, 潘天彪, 谢炳坤 . 猪成纤维细胞转染方法的比较.江苏农业科学, 2011(3):250-251. |
QIN Z X, PAN T B, XIE B K . Comparison of the transfection methods for porcine fibroblasts cell.Jiangsu Agricultural Sciences, 2011(3):250-251. (in Chinese) | |
[16] |
RICHTER A, KUROME M, KESSLER B, ZAKHARTCHENKO V, KLYMIUK N, NAGASHIMA H, WOLF E, WUENSCH A . Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnology, 2012,12(1):84.
doi: 10.1186/1472-6750-12-84 pmid: 23140586 |
[17] |
NAKAYAMA A, SATO M, SHINOHARA M, MATSUBARA S, YOKOMINE T, AKASAKA E, YOSHIDA M, TAKAO S . Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection System ™ . Cloning and Stem Cells, 2007,9(4):523-534.
doi: 10.1089/clo.2007.0021 pmid: 18154513 |
[18] |
ROSS J W, WHYTE J J, ZHAO J, SAMUEL M, WELLS K D, PRATHER R S . Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Research, 2009,19(4):611-620.
doi: 10.1007/s11248-009-9345-1 pmid: 19937273 |
[19] | BARNABÉ-HEIDER F, MELETIS K, ERIKSSON M, BERGMANN O ,SABELSTRÖM H,HARVEY MA,MIKKERS H,FRISÉN J . Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nature Methods, 2008,5(2):189-196. |
[20] |
ZOU M, KONINCK P D, NEVE R L, FRIEDRICH R W . Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (hsv-1) and electroporation: methods and optogenetic applications.Frontiers in Neural Circuits, 2014,8(7):41.
doi: 10.3389/fncir.2014.00041 pmid: 4018551 |
[21] |
ISHINO T, HASHIMOTO M, AMAGASA M, SAITO N, DOCHI O, KIRISAWA R . Establishment of protocol for preparation of gene-edited bovine ear-derived fibroblasts for somatic cell nuclear transplantation. Biomedical Research, 2018,39(2):95-104.
doi: 10.2220/biomedres.39.95 pmid: 29669988 |
[22] | 钟翠丽, 李国玲, 莫健新, 全绒, 王豪强, 李紫聪, 吴珍芳, 张献伟 . 不同电转仪的电转参数、质粒用量和拓扑结构对猪胎儿成纤维细胞转染效率的影响. 遗传, 2017(10):930-938. |
ZHONG C L, LI G L, MO J X, QUAN R, WANG H Q, LI Z C, WU Z F, ZHANG X W . Effects of parameters, plasmid dosages and topological structures on transfection efficiency of porcine fetal fibroblasts using different electroporators.Hereditas, 2017(10):930-938. (in Chinese) | |
[23] |
VON GROLL A, LEVIN Y, BARBOSA M C, RAVAZZOLO A P . Linear DNA low efficiency transfection by liposome can be improved by the use of cationic lipid as charge neutralizer. Biotechnology Progress, 2006,22(4):1220-1224.
doi: 10.1021/bp060029s pmid: 16889402 |
[24] |
AUER T O, DUROURE K, DE CIAN A, CONCORDET J P, DEL BENE F . Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 2014,24(1):142-153.
doi: 10.1101/gr.161638.113 pmid: 24179142 |
[25] | 楚素霞, 姚伦广, 邢延豪, 周延清 . 多基因表达系统研究进展. 中国生物工程杂志, 2011,31(6):116-123. |
CHU S X, YAO L G, XING Y H, ZHOU Y Q . Progress in research on multiple gene expression system. China Biotechnology, 2011,31(6):116-123. (in Chinese) | |
[26] | 李瑞国, 苗朝华, 侯健, 关宏, 安晓荣, 陈永福 . 牛β-酪蛋白座位无启动子基因打靶载体的构建. 华北农学报, 2010,25(4):17-24. |
LI R G, MIAO Z H, HOU J, GUAN H, AN X R, CHEN Y F . Non-promotor gene targeting vector construction for bovine β-casein site. Acta Agriculturae Boreali-Sinica, 2010,25(4):17-24. (in Chinese) | |
[27] | 沈俊杰, 单娟娟, 骆菁菁, 刘立, 钱程 . 构建多顺反子表达载体系统的新策略[J]. 浙江理工大学学报, 2009,26(4):561-566. |
SHEN J J, SHAN J J, LUO J J, LIU L, QIAN C . New strategy for construction of polycistron expression vector. Journal of Zhejiang University of Science and Technology, 2009,26(4):561-566. (in Chinese) | |
[28] |
DENG W, YANG D, ZHAO B, OUYANG Z, SONG J, FAN N, LIU Z, ZHAO Y, WU Q, NASHUN B, TANG J, WU Z, GU W, LAI L . Use of the 2A Peptide for Generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS ONE, 2011,6(5):e19986.
doi: 10.1371/journal.pone.0019986 pmid: 3094386 |
[29] | SATO M, KAGOSHIMA A, SAITOH I, INADA E, MIYOSHI K, OHTSUKA M, NAKAMURA S, SAKURAI T, WATANABE S . Generation of α-1, 3-galactosyltransferase-deficient porcine embryonic fibroblasts by CRISPR/Cas9-mediated knock-in of a small mutated sequence and a targeted toxin-based selection system. Reproduction in Domestic Animals, 2015,50(5):872-880. |
[30] |
NAKADE S, TSUBOTA T, SAKANE Y, KUME S, SAKAMOTO N, OBARA M, DAIMON T, SEZUTSU H, YAMAMOTO T, SAKUMA T, SUZUKI K T . Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature Communications, 2014,5:5560.
doi: 10.1038/ncomms6560 pmid: 4263139 |
[1] | YANG Qiang, XU Pan, JIANG Kai, QIAO ChuanMin, REN Jun, HUANG LuSheng, XING YuYun. Targeted Editing of BMPR-IB Gene in Porcine Fetal Fibroblasts via Lentivirus Mediated CRISPR/Cas9 Technology and Its Effects on Expression of Genes in the BMPs Signaling Pathway [J]. Scientia Agricultura Sinica, 2018, 51(7): 1378-1389. |
[2] | HUANG Qi-Ling, GAO Xiao-Ning, ZHAO Zhi-Bo, QIN Hu-Qiang, HUANG Li-Li. Transformed GFPuv into Pseudomonas syringae pv. actinidiae and Its Biological Characteristics and Colonization in Soil and Roots of Kiwifruit [J]. Scientia Agricultura Sinica, 2013, 46(2): 282-291. |
[3] | ZHANG Xiao-Hong, ZHAO Xue-Jing, LI Bo, LI Fei-Fei, LIU Pei-Xuan, MIN Dong-Hong. Factors Optimization of Pollen Electroporation Transformation and Identification of Transgenic Wheat [J]. Scientia Agricultura Sinica, 2013, 46(12): 2403-2411. |
|