Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 530-538.doi: 10.3864/j.issn.0578-1752.2019.03.013

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Optimizing the Electroporation Condition of Porcine Fetal Fibroblasts for Large Plasmid

ZHONG CuiLi1,LI GuoLing1,WANG HaoQiang1,MO JianXin1,QUAN Rong1,ZHANG XianWei2,LI ZiCong1,WU ZhenFang1,2,GU Ting1(),CAI GengYuan1,2()   

  1. 1 College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642
    2 Wenshi Food Group Co. Ltd., Xinxing 527400, Guangdong
  • Received:2018-09-18 Accepted:2018-12-29 Online:2019-02-01 Published:2019-02-14

Abstract:

【Background】 With the development of biotechnology, the physiological mechanisms and biological functions of research are becoming more and more complex, and improving the transfection efficiency of large vectors is of great significance for multi-gene co-expression systems, genome editing, and transgenic breeding. In transgenic breeding, the transgenic vectors is relatively large, and the efficiency of generating transgenic animals is also attributed to the transfection efficiency of porcine fetal fibroblasts (PFFs). 【Objective】 Therefore, this study mainly compared the electroporation efficiency of three electroporation apparatus ECM ? 830/NEPA 21/Nucleofector TM 2b on various parameters, plasmid dosage and topology, to explore the optimal electroporation condition of large vector in PFFs. 【Method】 We transfected a 26 kb plasmid, namely pPXAT-EGFP, into the PFFs, and then the electroporation efficiencies of various parameters of three electroporation apparatus ECM? 830/NEPA 21/Nucleofector ? 2b, and the dosage and topological structure of the plasmid by the flow cytometry were compared. 【Result】 By comparing the transfection efficiency of different transfection parameters, the results showed that the highest transfection efficiency of NEPA 21 was 13.24%±1.63% at pulse voltage 300 V, pulse length 1 ms, pulse interval 50 ms, pulse number 3 times, and the optimal electrical rotation parameter of Nucleofector TM 2b was U-023, whose transfection efficiency was 46.36%±3.95%. In addition, the transfection efficiencies of 6, 8, 10 and 12 μg 26 kb supercoiled plasmids were compared under the optimal electroporation parameters, and the results showed that the optimal plasmid dosage for ECM? 830 and Nucleofector TM 2b transfected PFFs was 12 μg with 8.44% ± 0.90% efficiency (transfection parameters: pulse voltage 300 V, pulse length 1 ms, pulse number 3 times) and 14.63% ± 3.21% (U-023), while the NEPA 21 achieved the highest efficiency of 6.09% ± 0.72% with 10 μg plasmid. Finally, we compared the transfection efficiency of different quality topologies and found that the transfection efficiency of linearized plasmids was low, only 34.96%-48.39% of the supercoiled plasmids. 【Conclusion】 Therefore, the optimal electroporation condition of PFFs by Nucleofector ? 2b was U-023 procedure, 12 μg supercoiled plasmid; NEPA 21 was pulse voltage 200 V, pulse length 3 ms, pulse interval 50 ms, pulse number 3 times, and 10 μg supercoiled plasmid; ECM? 830 was transfected with 12 μg supercoiled plasmid at pulse voltage 300 V, pulse length 1 ms, and pulse number 3 times to obtain the highest transfection efficiency. Comprehensive comparison of the above three kinds of electroporation apparatus, the optimum for transfecting PFFs with 26 kb large carrier was Nucleofector ? 2b.

Key words: electroporation, large plasmid, porcine fetal fibroblasts, ECM ?830, NEPA 21, Nucleofector ? 2b

Fig. 1

The plasmid profile of pPXAT-EGFP"

Table 1

Poring pulse of NEPA21"

编号
Number
脉冲电压
Voltage (V)
脉冲长度
Length (ms)
脉冲间隔
Continuous (ms)
脉冲次数
Times
衰减幅度
Voltage attenuation range (%)
电极
Electrode
NEPA-1 150 5 50 2 10 +
NEPA-2 200 3 50 3 10 +
NEPA-3 275 1.5 50 2 10 +
NEPA-4 300 1 50 3 10 +

Table 2

Grouping of optimizing the parameters of Nucleofector? 2b"

组别
Group
电转参数
Parameters
电转预混液
Transfection mixture
处理组1 Group 1 LONZA-A1) 100 μL Nucleofector? 2b电转液3)+8 μg质粒
100 μL the transfection mixture of Nucleofector? 2b and 8 μg plasmid
处理组2 Group 2 LONZA-U2)
空白组Blank group 不电转Non transfection 100 μL Nucleofector? 2b电转液Only 100 μL the transfection mixture of Nucleofector? 2b

Fig. 2

The transfection efficiency of different parameters A: Comparison of transfection efficiency between 4 kinds of NEPA21 electroporation parameters which are shown in Table 2; B: Comparison of transfection efficiency between two kinds of Nucleofector? 2b electroporation parameters, LONZA-A: A-033; LONZA-U: U-023o"

Fig. 3

The transfection efficiency of plasmid with different dosages BTX: The better parameter of ECM? 830(voltage 200 V, continuous 3 ms and 3 times);NEPA-4: The better parameter of NEPA 21(voltage 200 V, continuous 3 ms, interval 50 ms and 3 times); LONZA-U: The better parameter of Nucleofector? 2b(U-023)"

Fig. 4

The transfection efficiency of plasmid with different topological structures A: Cells transfected with the different topological structures of plasmid were observed by fluorescence microscopy; B: Comparison of transfection efficiency between supercoiled plasmid and linearized plasmid. BTX: The better parameter of ECM? 830(voltage 200 V, continuous 3 ms and 3 times); NEPA-4: The better parameter of NEPA 21(voltage 200 V, continuous 3 ms, interval 50 ms and 3 times); LONZA-U: The better parameter of Nucleofector? 2b(U-023); Sp: Supercoiled plasmid; Lp: Linearized plasmid.*: P<0.05; **: P<0.01"

Fig. 5

The transfection efficiency of different electroporation apparatus BTX: The better parameter of ECM? 830 (voltage 200 V, continuous 3 ms and 3 times); NEPA-4: The better parameter of NEPA 21(voltage 200 V, continuous 3 ms, interval 50 ms and 3 times); LONZA-U: The better parameter of Nucleofector? 2b(U-023)"

[1] RUAN J, LI H, XU K, WU T, WEI J, ZHOU R, LIU Z, MU Y, YANG S, OUYANG H ,CHEN-TSAI R Y, LI K. Highly efficient CRISPR/Cas9-mediated transgene knock in at the H11 locus in pigs. Scientific Reports, 2015,5:14253.
doi: 10.1038/srep14253 pmid: 26381350
[2] 王金霞, 徐影琪, 魏政立, 杨葳, 张梅英, 郑志红 . 一种能实现蛋白可逆表达的敲入载体构建方法. 辽宁农业科学, 2016(4):27-32.
WANG J X, XU Y Q, WEI Z L, YANG W, ZHANG M Y, ZHENG Z H . A method of constructing a knock-in vector which can achieve reversible protein expression.Liaoning Agricultural Sciences, 2016(4):27-32. (in Chinese)
[3] 张驹 . CRISPR/Cas9系统介导羊MSTN基因敲除和定点整合fat-1基因的研究[D]. 呼和浩特: 内蒙古大学, 2016.
ZHANG J . Generation of MSTN gene knock-out and fat-1 gene Knock-in goat via CRISPER/CAS9[D]. Huhhot: Inner Mongolia University, 2016. ( in Chinese)
[4] GUAN L Z, SUN Y P, XI Q Y, WANG J L, ZHOU J Y, SHU G, JIANG Q Y, ZHANG Y L . β-Glucanase specific expression in the parotid gland of transgenic mice. Transgenic Research, 2013,22(4):805-812.
doi: 10.1007/s11248-012-9682-3 pmid: 23328918
[5] CLARK K J, CARLSON D F, FAHRENKRUG S C . Pigs taking wing with transposons and recombinases. Genome Biology, 2007,8(Suppl 1):S13.
doi: 10.1186/gb-2007-8-s1-s13 pmid: 18047690
[6] DING S, WU X, LI G, HAN M, ZHUANG Y, XU T . Efficient transposition of the piggyBac(PB) transposon in mammalian cells and mice. Cell, 2005,122(3):473-483.
doi: 10.1016/j.cell.2005.07.013 pmid: 16096065
[7] LI M A, TURNER D J, NING Z, YUSA K, LIANG Q, ECKERT S, RAD L, FITZGERALD T W, CRAIG N L, BRADLEY A . Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Research, 2011,39(22):e148.
doi: 10.1093/nar/gkr764 pmid: 3239208
[8] WU S C, MEIR Y J, COATES C J, HANDLER A M, PELCZAR P, MOISYADI S , KAMINSKI J M. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(41):15008-15013.
doi: 10.1073/pnas.0606979103 pmid: 17005721
[9] WILSON M H, COATES C J, GEORGE AL JR . PiggyBac transposon-mediated gene transfer in human cells. Molecular Therapy, 2007,15(1):139-145.
[10] 杜新华, 高雪, 张路培, 高会江, 李俊雅, 许尚忠 . Piggybac转座子在牛基因组的整合位点及特征分析. 遗传, 2013,35(6):771-777.
DU X H, GAO X, ZHANG L P, GAO H J, LI J Y, XU S Z . Integration sites and their characteristic analysis of piggyBac transposon in cattle genome. Hereditas, 2013,35(6):771-777. (in Chinese)
[11] XIE Z, PANG D, WANG K, LI M, GUO N, YUAN H, LI J, ZOU X, JIAO H, OUYANG H, LI Z, TANG X . Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts Scientific Reports, 2017,7(1):3036.
doi: 10.1038/s41598-017-02785-y pmid: 28596588
[12] CHU V T, WEBER T, GRAF R, SOMMERMANN T, PETSCH K, SACK U, VOLCHKOV P, RAJEWSKY K , KÜHN R. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnology, 2016,16:4.
doi: 10.1186/s12896-016-0234-4 pmid: 4715285
[13] WU M, WEI C, LIAN Z, LIU R, ZHU C, WANG H, CAO J, SHEN Y, ZHAO F, ZHANG L, MU Z, WANG Y, WANG X, DU L, WANG C . Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Scientific Reports, 2016,6:24360.
doi: 10.1038/srep24360 pmid: 4827023
[14] LAI S, WEI S, ZHAO B, OUYANG Z, ZHANG Q, FAN N, LIU Z, ZHAO Y, YAN Q, ZHOU X, LI L, XIN J, ZENG Y, LAI L, ZOU Q . Generation of knock-in pigs carrying oct4-tdtomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS ONE, 2016,11(1). doi: 10.1371/journal.pone.0146562.
doi: 10.1371/journal.pone.0146562 pmid: 26756580
[15] 覃兆鲜, 潘天彪, 谢炳坤 . 猪成纤维细胞转染方法的比较.江苏农业科学, 2011(3):250-251.
QIN Z X, PAN T B, XIE B K . Comparison of the transfection methods for porcine fibroblasts cell.Jiangsu Agricultural Sciences, 2011(3):250-251. (in Chinese)
[16] RICHTER A, KUROME M, KESSLER B, ZAKHARTCHENKO V, KLYMIUK N, NAGASHIMA H, WOLF E, WUENSCH A . Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnology, 2012,12(1):84.
doi: 10.1186/1472-6750-12-84 pmid: 23140586
[17] NAKAYAMA A, SATO M, SHINOHARA M, MATSUBARA S, YOKOMINE T, AKASAKA E, YOSHIDA M, TAKAO S . Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection System . Cloning and Stem Cells, 2007,9(4):523-534.
doi: 10.1089/clo.2007.0021 pmid: 18154513
[18] ROSS J W, WHYTE J J, ZHAO J, SAMUEL M, WELLS K D, PRATHER R S . Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Research, 2009,19(4):611-620.
doi: 10.1007/s11248-009-9345-1 pmid: 19937273
[19] BARNABÉ-HEIDER F, MELETIS K, ERIKSSON M, BERGMANN O ,SABELSTRÖM H,HARVEY MA,MIKKERS H,FRISÉN J . Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nature Methods, 2008,5(2):189-196.
[20] ZOU M, KONINCK P D, NEVE R L, FRIEDRICH R W . Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (hsv-1) and electroporation: methods and optogenetic applications.Frontiers in Neural Circuits, 2014,8(7):41.
doi: 10.3389/fncir.2014.00041 pmid: 4018551
[21] ISHINO T, HASHIMOTO M, AMAGASA M, SAITO N, DOCHI O, KIRISAWA R . Establishment of protocol for preparation of gene-edited bovine ear-derived fibroblasts for somatic cell nuclear transplantation. Biomedical Research, 2018,39(2):95-104.
doi: 10.2220/biomedres.39.95 pmid: 29669988
[22] 钟翠丽, 李国玲, 莫健新, 全绒, 王豪强, 李紫聪, 吴珍芳, 张献伟 . 不同电转仪的电转参数、质粒用量和拓扑结构对猪胎儿成纤维细胞转染效率的影响. 遗传, 2017(10):930-938.
ZHONG C L, LI G L, MO J X, QUAN R, WANG H Q, LI Z C, WU Z F, ZHANG X W . Effects of parameters, plasmid dosages and topological structures on transfection efficiency of porcine fetal fibroblasts using different electroporators.Hereditas, 2017(10):930-938. (in Chinese)
[23] VON GROLL A, LEVIN Y, BARBOSA M C, RAVAZZOLO A P . Linear DNA low efficiency transfection by liposome can be improved by the use of cationic lipid as charge neutralizer. Biotechnology Progress, 2006,22(4):1220-1224.
doi: 10.1021/bp060029s pmid: 16889402
[24] AUER T O, DUROURE K, DE CIAN A, CONCORDET J P, DEL BENE F . Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 2014,24(1):142-153.
doi: 10.1101/gr.161638.113 pmid: 24179142
[25] 楚素霞, 姚伦广, 邢延豪, 周延清 . 多基因表达系统研究进展. 中国生物工程杂志, 2011,31(6):116-123.
CHU S X, YAO L G, XING Y H, ZHOU Y Q . Progress in research on multiple gene expression system. China Biotechnology, 2011,31(6):116-123. (in Chinese)
[26] 李瑞国, 苗朝华, 侯健, 关宏, 安晓荣, 陈永福 . 牛β-酪蛋白座位无启动子基因打靶载体的构建. 华北农学报, 2010,25(4):17-24.
LI R G, MIAO Z H, HOU J, GUAN H, AN X R, CHEN Y F . Non-promotor gene targeting vector construction for bovine β-casein site. Acta Agriculturae Boreali-Sinica, 2010,25(4):17-24. (in Chinese)
[27] 沈俊杰, 单娟娟, 骆菁菁, 刘立, 钱程 . 构建多顺反子表达载体系统的新策略[J]. 浙江理工大学学报, 2009,26(4):561-566.
SHEN J J, SHAN J J, LUO J J, LIU L, QIAN C . New strategy for construction of polycistron expression vector. Journal of Zhejiang University of Science and Technology, 2009,26(4):561-566. (in Chinese)
[28] DENG W, YANG D, ZHAO B, OUYANG Z, SONG J, FAN N, LIU Z, ZHAO Y, WU Q, NASHUN B, TANG J, WU Z, GU W, LAI L . Use of the 2A Peptide for Generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS ONE, 2011,6(5):e19986.
doi: 10.1371/journal.pone.0019986 pmid: 3094386
[29] SATO M, KAGOSHIMA A, SAITOH I, INADA E, MIYOSHI K, OHTSUKA M, NAKAMURA S, SAKURAI T, WATANABE S . Generation of α-1, 3-galactosyltransferase-deficient porcine embryonic fibroblasts by CRISPR/Cas9-mediated knock-in of a small mutated sequence and a targeted toxin-based selection system. Reproduction in Domestic Animals, 2015,50(5):872-880.
[30] NAKADE S, TSUBOTA T, SAKANE Y, KUME S, SAKAMOTO N, OBARA M, DAIMON T, SEZUTSU H, YAMAMOTO T, SAKUMA T, SUZUKI K T . Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature Communications, 2014,5:5560.
doi: 10.1038/ncomms6560 pmid: 4263139
[1] YANG Qiang, XU Pan, JIANG Kai, QIAO ChuanMin, REN Jun, HUANG LuSheng, XING YuYun. Targeted Editing of BMPR-IB Gene in Porcine Fetal Fibroblasts via Lentivirus Mediated CRISPR/Cas9 Technology and Its Effects on Expression of Genes in the BMPs Signaling Pathway [J]. Scientia Agricultura Sinica, 2018, 51(7): 1378-1389.
[2] HUANG Qi-Ling, GAO Xiao-Ning, ZHAO Zhi-Bo, QIN Hu-Qiang, HUANG Li-Li. Transformed GFPuv into Pseudomonas syringae pv. actinidiae and Its Biological Characteristics and Colonization in Soil and Roots of Kiwifruit [J]. Scientia Agricultura Sinica, 2013, 46(2): 282-291.
[3] ZHANG Xiao-Hong, ZHAO Xue-Jing, LI Bo, LI Fei-Fei, LIU Pei-Xuan, MIN Dong-Hong. Factors Optimization of Pollen Electroporation Transformation and Identification of Transgenic Wheat [J]. Scientia Agricultura Sinica, 2013, 46(12): 2403-2411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!