Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (1): 181-190.doi: 10.3864/j.issn.0578-1752.2019.01.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori)

ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan()   

  1. State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716
  • Received:2018-08-08 Accepted:2018-08-24 Online:2019-01-01 Published:2019-01-12
  • Contact: HongJuan CUI E-mail:Hongjuan.cui@gmail.com

Abstract:

【Objective】The objective of this study is to analyze the gene sequence and structural characteristics of integrin β2 in silkworm (Bombyx mori), and its expression profile in hemocytes following the larval exposure to different bacterial pathogens, investigate the binding and agglutination properties of the recombinant integrin β2 protein to various pathogen-associated molecular patterns (PAMPs) and bacteria, which will lay a foundation for further exploring the protein function of integrin β2 in B. mori. 【Method】Bioinformatics tools were used to determine the sequence and structural characteristics of integrin β2, and real-time fluorescent quantitative PCR (RT-qPCR) assay was executed to evaluate expression profile in hemocytes after microbial (Escherichia coli and Staphylococcus aureus) challenge. The cDNA fragment of integrin β2 was amplified using PCR, and the fragment containing the extracellular domain was inserted into a prokaryotic expression vector (pET22b). The insertion was confirmed in the recombinant plasmid and transformed into E. coli Rosetta (DE3), and then induced by IPTG to produce recombinant protein. The recombinant protein was purified using Ni-NTA affinity chromatography and analyzed by SDS-PAGE and Western blot. ELISA and Western blot were executed to determine the binding abilities of the recombinant protein to PAMPs (LPS and PGN) and different bacteria. Moreover, the agglutination ability and bacterial clearance assay were performed to understand the specific biological roles of integrin β2 in immunity.【Result】B. mori integrin β2 contains typical integrin β subunits, which comprises a long extracellular domain, a single transmembrane region and a short cytoplasmic tail. Further, it has several conserved motifs such as the MIDAS, EGF domain, Cys-repeat sequences and NPxY motifs. The RT-qPCR analysis showed that the integrin β2 expression varied significantly in hemocytes after infection with bacteria. High purity recombinant protein was obtained by prokaryotic expression and protein purification. The results of SDS-PAGE and Western blot showed that the purified recombinant protein was of high purity and could be used in subsequent tests. ELISA assay indicated that the purified recombinant integrin β2 protein had a strong binding ability to PAMPs (LPS and PGN). The results of bacterial binding test showed that the recombinant protein could bind many bacteria, but the binding ability with Gram-positive bacteria was higher than that with Gram-negative bacteria. The agglutination assay showed that the recombinant protein had strong agglutination effects on S. aureus in the presence of ca 2+. Further, bacterial clearance assay suggested that the recombinant protein could effectively promote the cleaning of exogenous invading bacteria from B. mori. 【Conclusion】The integrin β2 has a typical structure of the β integrin family, and it can recognize PAMPs (LPS and PGN) and enhance the aggregation of invading microbial pathogens by directly binding to them. Taken together, integrin β2 may play an important biological role in the bacterial immune response of B. mori.

Key words: Bombyx mori, integrin β2;, microbial challenge, prokaryotic expression, bacterial agglutination

Fig. 1

Protein sequence alignment of integrin β"

Fig. 2

Expression analysis of integrin β2 after induced by microbes *P<0.05 vs control PBS, **P<0.01 vs control PBS, Student’s t-test (n=3)"

Fig. 3

The prokaryotic expression and protein purification of integrin β2"

Fig. 4

Binding of the recombinant integrin β2 protein to PAMPs BSA used as the control"

Fig. 5

Western blot analysis of the binding of the recombinant integrin β2 protein to bacteria"

Fig. 6

Microorganism agglutination activities of the recombinant integrin β2 protein to S. aureus"

Fig. 7

In vivo bacterial clearance activities of rIntegrin β2"

[1] TAKADA Y, YE X , SIMON S. The integrins. Genome Biology, 2007, 8(5): Article 215.
[2] GIANCOTTI F G . A structural view of integrin activation and signaling. Developmental Cell, 2003,4(2):149-151.
doi: 10.1016/S1534-5807(03)00034-0 pmid: 12586058
[3] HUGHES A L . Evolution of the integrin α and β protein families. Journal of Molecular Evolution, 2001,52(1):63-72.
[4] BANNO A, GINSBERG M H . The ins and outs of integrin signaling// LAFLAMME S E, KOWALCZYK A P. Cell Junctions: Adhesion, Development, and Disease. Wiley-VCH Verlag GmbH & Co. KGaA, 2008: 1-23.
[5] HOOD J D, CHERESH D A . Role of integrins in cell invasion and migration. Nature Reviews Cancer, 2002,2(2):91-100.
doi: 10.1038/nrc727 pmid: 12635172
[6] HUTTENLOCHER A, HORWITZ A R . Integrins in cell migration. Cold Spring Harbor Perspectives in Biology, 2011,3(9):a005074.
[7] BROOKS P C, MONTGOMERY A M, ROSENFELD M, REISFELD R A, HU T, KLIER G, CHERESH D A . Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994,79(7):1157-1164.
doi: 10.1016/0092-8674(94)90007-8
[8] MEREDITH J E, SCHWARTZ M A . Integrins, adhesion and apoptosis. Trends in Cell Biology, 1997,7(4):146-150.
doi: 10.1016/S0962-8924(97)01002-7
[9] GIANCOTTI F G, RUOSLAHTI E . Integrin signaling. Science, 1999,285(5430):1028-1032.
doi: 10.1126/science.285.5430.1028
[10] DESGROSELLIER J S, CHERESH D A . Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer, 2010,10(1):9-22.
doi: 10.1038/nrc2748 pmid: 4383089
[11] ZHANG K, XU M, SU J, YU S, SUN Z, LI Y, ZHANG W, HOU J, SHANG L, CUI H . Characterization and identification of the integrin family in silkworm, Bombyx mori. Gene, 2014,549(1):149-155.
doi: 10.1016/j.gene.2014.07.060 pmid: 25064490
[12] ZHANG K, TAN J, MAN X, SU J, HU R, CHEN Y, FAN X, RUI Y, CUI H . A novel granulocyte-specific α integrin is essential for cellular immunity in the silkworm Bombyx mori. Journal of Insect Physiology, 2014,71:61-67.
doi: 10.1016/j.jinsphys.2014.10.007 pmid: 25450560
[13] ZHANG K, TAN J, SU J, LIANG H, SHEN L, LI C, PAN G, YANG L, CUI H . Integrin β3 plays a novel role in innate immunity in silkworm, Bombyx mori. Developmental and Comparative Immunology, 2017,77:307-317.
[14] 孙亚兰 . 家蚕整合蛋白β基因的克隆及其表达分析[D]. 武汉: 华中师范大学, 2009.
SUN Y L . cDNA cloning and gene expression of integrin β subunits from Bombyx mori[D]. Wuhan: Central China Normal University, 2009. ( in Chinese)
[15] NAGAOSA K, OKADA R, NONAKA S, TAKEUCHI K, FUJITA Y, MIYASAKA T, MANAKA J, ANDO I, NAKANISHI Y . Integrin βν-mediated phagocytosis of apoptotic cells in Drosophila embryos. The Journal of Biological Chemistry, 2011,286(29):25770-25777.
[16] XIE X, AULD V J . Integrins are necessary for the development and maintenance of the glial layers in the Drosophila peripheral nerve. Development, 2011,138(17):3813-3822.
doi: 10.1242/dev.064816 pmid: 21828098
[17] ZUSMAN S, GRINBLAT Y, YEE G, KAFATOS F C, HYNES R O . Analyses of PS integrin functions during Drosophila development. Development, 1993,118(3):737-750.
doi: 10.1016/0165-3806(93)90096-S pmid: 8076515
[18] BUNCH T A, GRANER M W, FESSLER L I, FESSLER J H, SCHNEIDER K D, KERSCHEN A, CHOY L P, BURGESS B W, BROWER D L . The PS2 integrin ligand tiggrin is required for proper muscle function in Drosophila. Development, 1998,125(9):1679-1689.
doi: 10.1007/s004290050153 pmid: 9521906
[19] BROWN N H . Cell-cell adhesion via the ECM: integrin genetics in fly and worm. Matrix Biology, 2000,19(3):191-201.
doi: 10.1016/S0945-053X(00)00064-0 pmid: 10936444
[20] SCHOTMAN H, KARHINEN L , RABOUILLE C. dGRASP- mediated noncanonical integrin secretion is required for Drosophila epithelial remodeling. Developmental Cell, 2008,14(2):171-182.
[21] LIN G, ZHANG X, REN J, PANG Z, WANG C, XU N, XI R . Integrin signaling is required for maintenance and proliferation of intestinal stem cells in Drosophila. Developmental Biology, 2013,377(1):177-187.
doi: 10.1016/j.ydbio.2013.01.032 pmid: 23410794
[22] LAVINE M D, STRAND M R . Haemocytes from Pseudoplusia includens express multiple α and β integrin subunits. Insect Molecular Biology, 2003,12(5):441-452.
[23] PECH L L, STRAND M R . Encapsulation of foreign targets by hemocytes of the moth Pseudoplusia includens( Lepidoptera: Noctuidae) involves an RGD-dependent cell adhesion mechanism. Journal of Insect Physiology, 1995,41(6):481-488.
doi: 10.1016/0022-1910(94)00136-5
[24] MAHAIRAKI V, LYCETT G , SIDÉN-KIAMOS I, SINDEN R E, LOUIS C. Close association of invading Plasmodium berghei and β integrin in the Anopheles gambiae midgut. Archives of Insect Biochemistry and Physiology, 2005,60(1):13-19.
[25] MOITA L F, VRIEND G, MAHAIRAKI V, LOUIS C, KAFATOS F C . Integrins of Anopheles gambiae and a putative role of a new beta integrin, BINT2, in phagocytosis of E. coli. Insect Biochemistry and Molecular Biology, 2006,36(4):282-290.
[26] MAMALI I, LAMPROU I, KARAGIANNIS F, KARAKANTZA M, LAMPROPOULOU M, MARMARAS V J . A β integrin subunit regulates bacterial phagocytosis in medfly haemocytes. Developmental and Comparative Immunology, 2009,33(7):858-866.
doi: 10.1016/j.dci.2009.02.004 pmid: 19428487
[27] HU J, ZHAO H, YU X, LIU J, WANG P, CHEN J, XU Q, ZHANG W . Integrin β1 subunit from Ostrinia furnacalis hemocytes: molecular characterization, expression, and effects on the spreading of plasmatocytes. Journal of Insect Physiology, 2010,56(12):1846-1856.
doi: 10.1016/j.jinsphys.2010.08.001 pmid: 20708011
[28] XU Q, YU X, LIU J, ZHAO H, WANG P, HU S, CHEN J, ZHANG W, HU J . Ostrinia furnacalis integrin β1 may be involved in polymerization of actin to modulate spreading and encapsulation of plasmatocytes. Developmental and Comparative Immunology, 2012,37(3/4):438-445.
doi: 10.1016/j.dci.2012.02.003 pmid: 22343085
[29] LEVIN D M, BREUER L N, ZHUANG S, ANDERSON S A, NARDI J B, KANOST M R . A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2005,35(5):369-380.
doi: 10.1016/j.ibmb.2005.01.003 pmid: 15804572
[30] 谈娟, 张奎, 徐曼, 陈思源, 崔红娟 . 家蚕整合素基因Bmintegrin αPS3的鉴定及亚细胞定位. 中国农业科学, 2013,46(22):4808-4815.
doi: 10.3864/j.issn.0578-1752.2013.22.019
TAN J, ZHANG K, XU M, CHEN S Y, CUI H Y . Identification and subcelluar localization of Bmintegrin αPS3 from silkworm( Bombyx mori). Scientia Agricultura Sinica, 2013,46(22):4808-4815. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.22.019
[31] 李重阳, 张奎, 申利, 赵羽卒, 潘光照, 徐曼, 苏晶晶, 崔红娟 . 家蚕整合素Bmintegrin β1基因的克隆及表达. 生物工程学报, 2017,33(12):1955-1967.
LI C Y, ZHANG K, SHEN L, ZHAO Y Z, PAN G Z, XU M, SU J J, CUI H Y . Cloning and expression of Bmintegrin β1 in silkworm Bombyx mori. Chinese Journal of Biotechnology, 2017,33(12):1955-1967. (in Chinese)
[32] ZHANG Y, WANG L, WANG L, WU N, ZHOU Z, SONG L . An integrin from shrimp Litopenaeus vannamei mediated microbial agglutination and cell proliferation. PLoS ONE, 2012,7(7):e40615.
doi: 10.1371/journal.pone.0040615 pmid: 3392225
[33] WANG Z, SHAO Y, LI C, LV Z, WANG H, ZHANG W, ZHAO X . A β-integrin from sea cucumber Apostichopus japonicus exhibits LPS binding activity and negatively regulates coelomocyte apoptosis. Fish and Shellfish Immunology, 2016,52:103-110.
[34] HUANG Y, ZHAO L L, FENG J L, ZHU H X, HUANG X, REN Q, WEN W . A novel integrin function in innate immunity from Chinese mitten crab ( Eriocheir sinensis). Developmental and Comparative Immunology, 2015,52(2):155-165.
doi: 10.1016/j.dci.2015.05.005 pmid: 26004499
[35] JIA Z, ZHANG T, JIANG S, WANG M, CHENG Q, SUN M, WANG L, SONG L . An integrin from oyster Crassostrea gigas mediates the phagocytosis toward Vibrio splendidus through LPS binding activity. Developmental and Comparative Immunology, 2015,53(1):253-264.
[1] LONG YanBi,WU YunFei,ZHANG Qian,CHEN Peng,PAN MinHui. Screening and Identification of HSP90 Interacting Proteins in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2022, 55(6): 1253-1262.
[2] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[3] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[4] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[5] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[6] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[7] BI KeRan,LI Yin,HAN KaiKai,ZHAO DongMin,LIU QingTao,LIU YuZhuo,HUANG XinMei,YANG Jing. Prokaryotic Expression and Polyclonal Antibody Preparation of Duck Oligoadenylate Synthase-Like Protein [J]. Scientia Agricultura Sinica, 2019, 52(23): 4429-4436.
[8] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[9] DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384.
[10] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[11] WANG Hui,CHAI ZhiXin,ZHU JiangJiang,ZHONG JinCheng,ZHANG ChengFu,Xin JinWei. Cloning and Identification of Long-Chain Non-Coding RNA Linc24063 and Its Correlation with the Expression Level of miRNAs in Yak [J]. Scientia Agricultura Sinica, 2019, 52(14): 2538-2547.
[12] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[13] ZHAO Jie, REN SuWei, LIU Ning, AI XinYu, MA Ji, LIU XiaoNing. Cloning and Expression of Phosphatidylethanolamine Binding Protein in Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2018, 51(8): 1493-1503.
[14] ZHI Shuang, REN YanHong, TANG Xing, XU FengXiang, WANG ChuanHong, ZHAO AiChun, WANG XiLing. Molecular Cloning and Expression Analysis of Genes MaGDHs Encoding Glutamate Dehydrogenase in Mulberry [J]. Scientia Agricultura Sinica, 2018, 51(4): 758-769.
[15] Jie HU,XinYi WANG,Fei WANG. Functional Characterization of BmCaspase-8-Like (BmCasp8L) as an Immune Negative Regulatory Molecule in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(21): 4188-4196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!