Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (7): 1303-1314.doi: 10.3864/j.issn.0578-1752.2016.07.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Trend Analysis and Estimation of Net Primary Productivity in Yinchuan Basin

LI Bo-yan1, REN Zhi-yuan1,2   

  1. 1College of Tourism and Environment, Shaanxi Normal University, Xi’an 710119
    2Institute for Historical Environment and Socio-economic Development in Northwest China, Xi’an 710062
  • Received:2015-09-10 Online:2016-04-01 Published:2016-04-01

Abstract: 【Objective】The objective of this study is to simulate the net primary productivity (NPP) using the NPP model in Yinchuan Basin based on the remote sensing data and meteorological data from 2000 to 2010. The spatio-temporal changing process of NPP and its trend was analyzed (monthly and yearly), and the Yinchuan Basin’s vegetation NPP spatio-temporal pattern and variation were described for discussing the coupling relationship between the NPP and vegetation health index (VHI).【Method】Using SPOT VEGETATION data (1 km spatial resolution) from 2000-2010, as well as NDVI data and metrological data from 2000-2010, the NPP model was applied to analyze the spatial-temporal characteristics of NPP changes in Yinchuan Basin. The estimation was based on CASA model, linier regression equation and SVD method. 【Result】 Analysis of the spatial-temporal pattern of NPP showed that the NPP in Yinchuan Basin was increasing slowly at the rate of 0.51 per month, the most in July and October. The average annual change was 0.24, corresponding with the changes of rainfall. The NPP in Yinchuan Basin was higher in the south and east, while lower in the middle and west. The lowest value lies in Xixia region, Xingqing region and Jinfeng region: Dawukou District>Yongning County>Lingwu City>Xixia District>Qingtongxia City>Litong District>Pingluo County>Helan County>Huinong District>Xingqing District>Jinfeng District. The trend of NPP had a negative relationship with the amount of towns and the number of population. The correlation of the first mode was -0.69, showing the VHI made a negative influence on NPP. 【Conclusion】The estimated regional CASA model was precise to the actual data. The NPP in Yinchuan Basin was generally benign except some areas. Soil moisture can affect the NPP showing that drought can be predicted by using the value of NPP.

Key words:  net primary production (NPP), spatial-temporal pattern, trend in NPP change, SVD, Yinchuan Basin

[1]    Ebermeyr E. Esamte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaues. Berlin: Julius Springer,1876.
[2]    Uchijima Z, Seino H. Agroclimatic evaluation of net primary productivity of natural vegetation(I): Chikugo model for evaluating primary productivity. Journal of Agricultural Meteorology, 1985, 40(4): 343-352.
[3]    朱志辉. 我国自然植被生产力功能和地带性结构的气候耦合. 地理学报, 1996, 51(增刊): 66-72.
Zhu Z H. Climatic coupling between natural vegetation productivity function and zonality structure in China. Acta Geographic Sinica, 1996, 51(Suppl.): 66-72. (in Chinese)
[4]    Leith H, Whittaker R H. Modeling the primary productivity of the world//Lieth H, Whittaker R H, eds. Primary Productivity of the Biosphere. New York: Springer-Verlag, 1975: 237-263.
[5]    Running S W, Hunt E R. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC and an application for global- scale models//Ehleringer J R, Field C B. eds. Scaling Physiological Processes: Leaf to Globe. San Diego: Academic Press, 1993: 141-158.
[6]    McGuire A D, Melillo J M, Kicklighter D W, Joyce L A. Equilibrium responses of soil carbon to climate change-empirical and process- based estimates. Journal of Biogeography, 1995, 22(4/5): 785-796.
[7]    周才平, 欧阳华, 王勤学, 渡边正孝, 孙青强. 青藏高原主要生态系统净初级生产力的估算. 地理学报, 2004, 59(1): 74-79.
Zhou C P, Ouyang H, Wang Q X, Watanabe M, Sun Q Q. Estimation of net primary productivity in Tibetan Plateau. Acta Geographic Sinica, 2004, 59(1): 74-79. (in Chinese)
[8]    Parton W J, Scurlock J M, Ojima D S, Gilmanov T G, Scholes R J, Schimel D S, Kirchner T, Menaut J C, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario J I. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7: 785-809.
[9]    Bloom A J, Chapin F S, Mooney H A. Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics, 1985, 16: 363-392.
[10]   Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A, Klooster S A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811-841.
[11]   孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究. 地理学报, 2000, 55(1): 36-45.
Sun R, Zhu Q J. Pattern and seasonal change of net primary productivity in China from April. Acta Geographic Sinica, 2000, 55(1): 36-45. (in Chinese)
[12]   Prince S D, Goward S N. Global primary production: A remote sensing approach. Journal of Biogeography, 1995, 22: 815-835.
[13]   Ji J. A climate vegetation interaction model: Simulating physical and biological processes at the surface. Journal of Biogeography, 1995, 22: 445-451.
[14]   Liu J, Chen J M, Cihlar J, Park W M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62: 158-175.
[15]   李晶, 任志远. 陕北黄土高原土地利用生态服务价值时空研究. 中国农业科学, 2006, 39(12): 2538-2544.
Li J, Ren Z Y. The spatial analysis of land use ecological services value in Loess Plateau in northern Shaanxi province. Scientia Agricultura Sinica, 2006, 39(12): 2538-2544. (in Chinese)
[16]   朱文泉. 中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D]. 北京: 北京师范大学, 2005.
Zhu W Q. Estimation of net primary productivity of Chinese terrestrial vegetation on remote sensing and its relationship with global climate change[D]. Beijing: Beijing Normal University, 2005. (in Chinese)
[17]   朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424.
Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology, 2007, 31(3): 413-424. (in Chinese)
[18]   李晶, 任志远. 基于GIS的陕北黄土高原土地生态系统固碳释氧价值评价. 中国农业科学, 2011, 44(14): 2943-2950.
Li J, Ren Z Y. Research on the values of CO2 fixation and O2 release by land use ecosystem in Loess Plateau in northern Shaanxi province. Scientia Agricultura Sinica, 2011, 44(14): 2943-2950. (in Chinese)
[19]   张镱锂, 祁威, 周才平, 丁明军, 刘林山, 高俊刚, 摆万奇, 王兆锋, 郑度. 青藏高原高寒草地净初级生产力(NPP)时空分异. 地理学报, 2013, 68(9): 1197-1211.
Zhang Y L, Qi W, Zhou C P, Ding M J, Liu L S, Gao J G, Bai W Q, Wang Z F, Zheng D. Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009. Acta Geographica Sinica, 2013, 68(9): 1197-1211. (in Chinese)
[20]   牟伶俐. 农业旱情遥感监测指标的适应性与不确定性分析[D]. 北京: 中国科学院, 2006.
Mu L L. Suitability and uncertainty analysis of agricultural drought indicator with remote sensing[D]. Beijing: Chinese Academy of Sciences, 2006. (in Chinese)
[21]   刘连福. 一元线性回归方程中回归系数的几种确定方法. 沈阳师范大学学报: 自然科学版, 2008, 26(4): 406-408.
Liu L F. Several methods for determining the regression coefficient of the linear regression equation. Journal of Shenyang Normal University: Natural Science Edition, 2008, 26(4): 406-408. (in Chinese)
[22]   宋怡, 马明国. 基于SPOT VEGETATION数据的中国西北植被覆盖变化分析. 中国沙漠, 2007, 27(1): 89-94.
Song Y, Ma M G. Analysis of vegetation cover change in Northwest Chinese based on SPOT VEGETATION data. Chinese Desert, 2007, 27(1): 89-94. (in Chinese)
[23]   王澄海, 王式功, 杨德保, 董安祥. 中国西北春季降水与太平洋海温的相关特征. 应用气象学报, 2001, 12(3): 383-384.
Wang C H, Wang S G, Yang D B, Dong A X. Spring precipitation and Pacific sea features in Northwest China. Quarterly Journal of Applied Meteorology, 2001, 12(3): 383-384. (in Chinese)
[24]   李跃清, 李崇银. 春季川渝地区气温与500 hPa高度场的奇异值分解. 高原气象, 2001, 20(2): 165-172.
Li Y Q, Li C Y. Singular value decomposition (SVD) analysis of air temperature in spring in Sichuan province and Chongqing city and 500 hPa geopotential height. Plateau Meteorology, 2001, 20(2): 165-172. (in Chinese)
[25]   Kogan F. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 1995, 15: 91-100.
[26]   Kogan F. Global drought watch from space. Bulletin of the American Meteorological Society, 1997, 7(4): 621-636.
[27]   Kogan F, Yang B, Guo W, Pei Z, Jiao X. Modelling corn production in China using AVHRR-based vegetation health indices. International Journal of Remote Sensing, 2005, 26(11): 2325-2336.
[28]   Unganai L, Kogan F. Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sensing of Environment, 1998, 63: 219-232.
[29]   Salazar L, Kogan F, Roytman L. Use of remote sensing data for estimation of winter wheat yield in the United States. International Journal of Remote Sensing, 2007, 28(17): 3795-3811.
[30]   Seiler R A, Kogan F, Guo W, Vinocur M. Seasonal and interannual responses of the vegetation and production of crops in Cordoba, Argentina assessed by AVHRR-derived vegetation indices. Advances in Space Research, 2007, 39(1): 88-94.
[31]   Kogan F. The Impact of Climate and Technology on Soviet Grain Production. Falls Church, VA, USA: DELPHIC Inc., 1986: 178.
[32]   Kogan F. Droughts of the late 1980’s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 1994, 76(5): 655-668.
[33]   潘卫华, 陈家金, 陈惠, 张春桂, 李丽纯. 基于MODIS数据的福建省干旱遥感动态监测分析. 中国生态农业学报, 2008, 16(4): 1015-1019.

Pan W H, Chen J J, Chen H, Zhang C G, Li L C. Dynamic monitoring in Fujian province form Modis remote sensing data. Chinese Journal of Eco-Agriculture, 2008, 16(4): 1015-1019. (in Chinese)
[34]   李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究. 地理学报, 2001, 56(4): 379-389.
Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere. Acta Geographica Sinica, 2001, 56(4): 379-389. (in Chinese)
[35]   孙睿, 朱启疆. 植被净第一性生产力模型及中国净第一性生产力的分布. 北京师范大学学报: 自然科学版, 1998, 34(增刊): 132-137.
Sun R, Zhu Q J. Net primary production model and the pattern of net primary production in China. Journal of Beijing Normal University: Natural Science Edition, 1998, 34(Suppl.): 132-137. (in Chinese)
[36]   刘明亮. 中国土地利用/土地覆被变化与陆地生态系统植被碳库和生产力研究[D]. 北京: 中国科学院, 2001.
Liu M L. Land-use/cover change and terrestrial ecosystem phytomass carbon pool and production in China[D]. Beijing: Chinese Academy of Sciences, 2001. (in Chinese)
[37]   陶波, 李克让, 邵雪梅, 曹明奎. 中国陆地净初级生产力时空特征模拟. 地理学报, 2003, 58(3): 372-380.
Tao B, Li K R, Shao X M, Cao M K. Temporal and spatial pattern of net primary production of terrestrial ecosystems in China. Acta Geographica Sinica, 2003, 58(3): 372-380. (in Chinese)
[38]   王彧, 黄耀, 张稳, 于永强, 王平. 中国农业植被净初级生产力模拟(Ⅱ)-模型的验证与净初级生产力估算. 自然资源学报, 2006, 21(6): 916-925.
Wang Y, Huang Y, Zhang W, Yu Y Q, Wang P. Simulating net primary production of agricultural vegetation in China (Ⅱ): Model validation and estimation of net primary production. Journal of Natural Resources, 2006, 21(6): 916-925. (in Chinese)
[39]   樊江文, 钟华平, 梁飚, 石培礼, 于贵瑞. 草地生态系统碳储量及其影响因素. 中国草地, 2003, 25(6): 51-58. 
Fan J W, Zhong H P, Liang B, Shi P L, Yu G R. Carbon stock in grassland ecosystem and its affecting factors. Grassland of China, 2003, 25(6): 51-58. (in Chinese)
[40]   李柏延, 任志远, 李瑞宗, 王昀琛. 西安市地表温度反演及城市热岛强度定量化研究. 资源科学, 2014, 36(12): 2631-2636.
Li B Y, Ren Z Y, Li R Z, Wang Y C. Urban heat island intensity quantitative inversion and city land surface temperatures in Xi’an. Resources Science, 2014, 36(12): 2631-2636. (in Chinese)
[1] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!