Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2172-2185.doi: 10.3864/j.issn.0578-1752.2023.11.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of nuoB on the Biofilm Formation and Cellular Metabolism of Meat-Borne Pseudomonas fragi During Chilled Storage

WU YaJie1(), TAN Song1, CHEN YuPing1, NIU AJuan1, LIU YuXin1, WANG GuangYu1(), XU XingLian2, QIU WeiFen1   

  1. 1 College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023
    2 College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2022-10-25 Accepted:2022-12-21 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】This paper focused on the impacts of nuoB on the biofilm formation and cell metabolism in Pseudomonas fragi (P. fragi), so as to further reveal the regulatory mechanism of nuoB in the spoilage of chilled meat contaminated with P. fragi, and to provide a theoretical basis for developing effective preservation system of chilled meat. 【Method】P. fragi NMC25 and its nuoB-mutant strain were used in the present study, and the differences in the spatial structure of biofilms were observed by confocal laser scanning microscopy (CLSM). The changes in biofilm composition were tested by the cell enumeration and the analysis of the extracellular polymeric substances. In addition, the ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) was employed to investigate the alterations of nuoB-related metabolite abundance. 【Result】CLSM images showed that cells in the biofilms of wild-type strains cultivated in situ was highly dense, nematic ordering, whereas ΔnuoB displayed relatively disorganized and sparse arrangement. Additionally, cell enumeration revealed insignificant differences between the wild-type and mutant biofilms regardless of the difference of culture medium. The result indicated that the mutants did not change significantly in their ability to grow as biofilm on the surface of TSA or meat sample. For extracellular polymeric substances from biofilms in situ, the protein and carbohydrate contents of ΔnuoB were significantly higher (P<0.01, P<0.05, respectively) than those of wild-type strains, indicating that nuoB affected the secretion of extracellular polymers by P. fragi. The metabolomics results revealed a clear separation between the wild and mutant groups in an orthogonal partial least squares discriminant analysis model (R2X=0.481, R2Y=0.977, Q2=0.909), which suggested that the metabolites of the mutants had changed markedly. In the model, differentially expressed metabolites were screened, including 2-hydroxycinnamic acid, L-tyrosine, L-phenylalanine, DL-tryptophan, 17(S)-HETE, and 5-OxoETE. Pathway mapping analysis was conducted based on the chosen candidates. In total, the major metabolic pathways included fatty acid biosynthesis, unsaturated fatty acid biosynthesis, riboflavin metabolism, 2-oxocarboxylic acid metabolism, purine metabolism, cyanogenic amino acid metabolism, and phenylalanine metabolism. 【Conclusion】The disruption of nuoB stimulated significant variations in the spatial structure of the P. fragi biofilm grown in situ, promoting the biosynthesis of extracellular polymeric substances and affecting intracellular metabolic pathways, such as carbon, nucleotide, lipid, and amino acid metabolism.

Key words: Pseudomonas fragi, nuoB, biofilm, extracellular polymeric substances, cell metabolism

Table 1

The gradient elution of mobile phase"

时间 Time (min) A (%) B (%)
0 98 2
1.5 98 2
12 0 100
14 0 100
14.1 98 2
17.0 98 2

Fig. 1

Images of macrocolony biofilm formation of the P. fragi NMC25 and ΔnuoB Control: Biofilms cultivated on TSA without transfer; A: P. fragi NMC25 biofilms; B: ΔnuoB biofilms"

Fig. 2

Confocal laser scanning microscopy images of P. fragi NMC25 and ΔnuoB biofilms Green cells represent live cells and red cells represent dead cells. A, B indicate the spatial structure in NMC25 and ΔnuoB biofilms in situ, respectively; C, D indicate the spatial structure in NMC25 and ΔnuoB biofilms cultivated on TSA, respectively"

Table 2

Cell counts, and EPS content in the biofilms of two strains of P. fragi grown on different culture mediums"

细菌数量 Bacterial counts
(log CFU/colony)
蛋白质 Protein
(µg/mg-wet-cell-biomass)
总糖 Carbohydrate
(µg/mg-wet-cell-biomass)
蛋白/总糖
Protein/Carbohydrate ratio
原位培养 In situ cultivation
NMC25 9.92±0.07 38.61±1.92 14.16±0.69 2.73±0.23
ΔnuoB 9.86±0.06 46.65±1.62** 16.55±0.93* 2.82±0.08
TSA培养 TSA cultivation
NMC25 10.11±0.09 0.61±0.36 17.23±0.80 0.04±0.02
ΔnuoB 10.05±0.03 2.10±0.63** 17.40±0.77 0.12±0.04**

Fig. 3

OPLS-DA score plot (A), loading plot (B), and permutation plot (C) of metabolite variation between the NMC25 and ΔnuoB groups"

Fig. 4

Volcano plot (A) and VIP scores (B) of top 15 important featured metabolites between NMC25 and ΔnuoB strains"

Fig. 5

The bubble charts of top 20 metabolic pathways between the NMC25 and ΔnuoB groups"

Fig. 6

Proposed schematic of intracellular metabolic alterations affected by nuoB Metabolites marked in green or red represent significantly higher or lower concentrations in the ΔnuoB group as compared to the NMC25 group, respectively (VIP>1, P<0.05). Upward and downward arrows beside metabolites indicate increased and decreased changes in addition to discriminant metabolites, respectively (|lg2FC|>0.58 or VIP>1). Metabolites colored in black without arrow represents similar level between the NMC25 group and ΔnuoB group, while metabolites in italic were not detected"

[1]
ODEYEMI O A, ALEGBELEYE O O, STRATEVA M, STRATEV D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 311-331.

doi: 10.1111/1541-4337.12526 pmid: 33325162
[2]
BOTTA C, FERROCINO I, CAVALLERO M C, RIVA S, GIORDANO M, COCOLIN L. Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. International Journal of Food Microbiology, 2018, 266: 337-345.

doi: S0168-1605(17)30421-X pmid: 29033074
[3]
CALDERA L, FRANZETTI L, VAN COILLIE E, DE VOS P, STRAGIER P, DE BLOCK J, HEYNDRICKX M. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiology, 2016, 54: 142-153.

doi: 10.1016/j.fm.2015.10.004
[4]
MOHAREB F, IRIONDO M, DOULGERAKI A I, VAN HOEK A, AARTS H, CAUCHI M, NYCHAS G J E. Identification of meat spoilage gene biomarkers in Pseudomonas putida using gene profiling. Food Control, 2015, 57: 152-160.

doi: 10.1016/j.foodcont.2015.04.007
[5]
WANG G Y, WANG H H, HAN Y W, XING T, YE K P, XU X L, ZHOU G H. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology, 2017, 63: 139-146.

doi: 10.1016/j.fm.2016.11.015
[6]
MANSUR A R, SONG E J, CHO Y S, NAM Y D, CHOI Y S, KIM D O, SEO D H, NAM T G. Comparative evaluation of spoilage- related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Food Microbiology, 2019, 77: 166-172.

doi: 10.1016/j.fm.2018.09.006
[7]
YANG X Y, ZHU L X, ZHANG Y M, LIANG R R, LUO X. Microbial community dynamics analysis by high-throughput sequencing in chilled beef longissimus steaks packaged under modified atmospheres. Meat Science, 2018, 141: 94-102.

doi: S0309-1740(17)31315-3 pmid: 29606393
[8]
ZOTTA T, PARENTE E, IANNIELLO R G, DE FILIPPIS F, RICCIARDI A. Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. International Journal of Food Microbiology, 2019, 293: 102-113.

doi: S0168-1605(18)30599-3 pmid: 30677559
[9]
WICKRAMASINGHE N N, RAVENSDALE J, COOREY R, CHANDRY S P, DYKES G A. The predominance of psychrotrophic pseudomonads on aerobically stored chilled red meat. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1622-1635.

doi: 10.1111/crf3.v18.5
[10]
DE FILIPPIS F, LA STORIA A, VILLANI F, ERCOLINI D. Strain-level diversity analysis of Pseudomonas fragi after in situ pangenome reconstruction shows distinctive spoilage-associated metabolic traits clearly selected by different storage conditions. Applied and Environmental Microbiology, 2019, 85(1): e02212- e02218.
[11]
王光宇, 李晴, 唐文倩, 王虎虎, 徐幸莲, 邱伟芬. nuoB对莓实假单胞菌生理特性及在冷鲜鸡肉中致腐能力的影响. 中国农业科学, 2021, 54(8): 1761-1771.

doi: 10.3864/j.issn.0578-1752.2021.08.015
WANG G Y, LI Q, TANG W Q, WANG H H, XU X L, QIU W F. Effects of nuoB on physiological properties of Pseudomonas fragi and its spoilage potential in chilled chicken. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771. (in Chinese)
[12]
HIRST J. Towards the molecular mechanism of respiratory complex I. Biochemical Journal, 2010, 425(2): 327-339.

doi: 10.1042/BJ20091382
[13]
SHARMA L, LU J X, BAI Y D. Mitochondrial respiratory complex I: Structure, function and implication in human diseases. Current Medicinal Chemistry, 2009, 16(10): 1266-1277.

doi: 10.2174/092986709787846578
[14]
SPERO M A, AYLWARD F O, CURRIE C R, DONOHUE T J. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH: Quinone oxidoreductase (Complex I) across bacteria. MBio, 2015, 6(2): e00389-15.
[15]
OPPERMANN S, SENG K, SHWEICH L, FRIEDRICH T. The gene order in the nuo-operon is not essential for the assembly of E. coli complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2022, 1863(7): 148592.
[16]
FORMOSA L E, DIBLEY M G, STROUD D A, RYAN M T. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Seminars in Cell & Developmental Biology, 2018, 76: 154-162.
[17]
FRIEDRICH T, DEKOVIC D K, BURSCHEL S. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (respiratory complex I). Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2016, 1857(3): 214-223.

doi: 10.1016/j.bbabio.2015.12.004
[18]
FLEMMING D, HELLWIG P, FRIEDRICH T. Involvement of tyrosines 114 and 139 of subunit NuoB in the proton pathway around cluster N2 in Escherichia coliNADH: Ubiquinone oxidoreductase. Journal of Biological Chemistry, 2003, 278(5): 3055-3062.

doi: 10.1074/jbc.M208849200
[19]
SCHNEIDER D, POHL T, WALTER J, DÖRNER K, KOHLSTÄDT M, BERGER A, SPEHR V, FRIEDRICH T. Assembly of the Escherichia coli NADH: Ubiquinone oxidoreductase (complex I). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008, 1777(7/8): 735-739.

doi: 10.1016/j.bbabio.2008.03.003
[20]
PRÜSS B M, NELMS J M, PARK C, WOLFE A J. Mutations in NADH: Ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. Journal of Bacteriology, 1994, 176(8): 2143-2150.

doi: 10.1128/jb.176.8.2143-2150.1994
[21]
王光宇. 气调包装对冷鲜鸡肉中莓实假单胞菌致腐效应的抑制机制[D]. 南京: 南京农业大学, 2018.
WANG G Y. Inhibition mechanism of modified atmosphere packaging on the rotting effect of Pseudomonas berberis in chilled chicken[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[22]
FENG J S, LAMOUR G, XUE R, MIRVAKLIKI M N, HATZIKIRIAKOS S G, XU J, LI H B, WANG S, LU X N. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. International Journal of Food Microbiology, 2016, 238: 172-182.

doi: 10.1016/j.ijfoodmicro.2016.09.008
[23]
PANG X Y, CHEN L, YUK H G. Stress response and survival of Salmonella Enteritidis in single and dual species biofilms with Pseudomonas fluorescens following repeated exposure to quaternary ammonium compounds. International Journal of Food Microbiology, 2020, 325: 108643.

doi: 10.1016/j.ijfoodmicro.2020.108643
[24]
WANG G Y, MA F, WANG H H, XU X L, ZHOU G H. Characterization of extracellular polymeric substances produced byPseudomonas fragi under air and modified atmosphere packaging. Journal of Food Science, 2017, 82(9): 2151-2157.

doi: 10.1111/1750-3841.13832
[25]
ZHANG T, DING H, CHEN L, ZHANG S S, WU P F, XIE K Z, PAN Z M, ZHANG G X, DAI G J, WU H Q, WANG J Y. Characterization of chilled chicken spoilage using an integrated microbiome and metabolomics analysis. Food Research International, 2021, 144: 110328.

doi: 10.1016/j.foodres.2021.110328
[26]
ZHANG P P, BADONI M, GÄNZLE M, YANG X Q. Growth of Carnobacterium spp. isolated from chilled vacuum-packaged meat under relevant acidic conditions. International Journal of Food Microbiology, 2018, 286: 120-127.

doi: 10.1016/j.ijfoodmicro.2018.07.032
[27]
MA K, ZHAO H X, ZHANG C, LU Y, XING X H. Impairment of NADH dehydrogenase for increased hydrogen production and its effect on metabolic flux redistribution in wild strain and mutants of Enterobacter aerogenes. International Journal of Hydrogen Energy, 2012, 37(21): 15875-15885.

doi: 10.1016/j.ijhydene.2012.08.017
[28]
WICKRAMASINGHE N N, RAVENSDALE J, COOREY R, DYKES G A, CHANDRY P S. Transcriptional profiling of biofilms formed on chilled beef by psychrotrophic meat spoilage bacterium, Pseudomonas fragi 1793. Biofilm, 2021, 3: 100045.
[29]
FROST I, SMITH W P J, MITRI S, MILLAN A S, DAVIT Y, OSBORNE J M, PITT-FRANCIS J M, MACLEAN R C, FOSTER K R. Cooperation, competition and antibiotic resistance in bacterial colonies. The ISME Journal, 2018, 12(6): 1582-1593.

doi: 10.1038/s41396-018-0090-4
[30]
MITRI S, CLARKE E, FOSTER K R. Resource limitation drives spatial organization in microbial groups. The ISME Journal, 2016, 10(6): 1471-1482.

doi: 10.1038/ismej.2015.208
[31]
NG J, KIDD S P. The concentration of intracellular nickel in Haemophilus influenzae is linked to its surface properties and cell-cell aggregation and biofilm formation. International Journal of Medical Microbiology, 2013, 303(3): 150-157.

doi: 10.1016/j.ijmm.2013.02.012
[32]
BOVE P, CAPOZZI V, GAROFALO C, RIEU A, SPANO G, FIOCCO D. Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: Effects on growth, stress tolerance, cell surface properties and biofilm formation. Microbiological Research, 2012, 167(4): 187-193.

doi: 10.1016/j.micres.2011.07.001
[33]
ASHRAFUDOULLA M, MIZAN M F R, HA A J W, PARK S H, HA S D. Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiology, 2020, 91: 103500.

doi: 10.1016/j.fm.2020.103500
[34]
WICKRAMASINGHE N N, RAVENSDALE J T, COOREY R, DYKES G A, SCOTT CHANDRY P. In situ characterisation of biofilms formed by psychrotrophic meat spoilage pseudomonads. Biofouling, 2019, 35(8): 840-855.

doi: 10.1080/08927014.2019.1669021
[35]
YAN J, NADELL C D, STONE H A, WINGREEN N S, BASSLER B L. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications, 2017, 8(1): 1-11.

doi: 10.1038/s41467-016-0009-6
[36]
NADELL C D, DRESCHER K, WINGREEN N S, BASSLER B L. Extracellular matrix structure governs invasion resistance in bacterial biofilms. The ISME Journal, 2015, 9(8): 1700-1709.

doi: 10.1038/ismej.2014.246
[37]
LIU F, SUN Z L, WANG F T, LIU Y W, ZHU Y Z, DU L H, WANG D Y, XU W M. Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. Food Microbiology, 2020, 86: 103344.

doi: 10.1016/j.fm.2019.103344
[38]
SUN E. The regulation and characterization of surfing motility in Pseudomonas aeruginosa[D]. Vancouver: University of British Columbia, 2019.
[39]
EVANS C R, KEMPES C P, PRICE-WHELAN A, DIETRICH L E P. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends in Microbiology, 2020, 28(9): 732-743.

doi: S0966-842X(20)30079-2 pmid: 32781027
[40]
FLEMMING H C, WINGENDER J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8(9): 623-633.

doi: 10.1038/nrmicro2415
[41]
RATHER M A, GUPTA K, BARDHAN P, BORAH M, SARKAR A, ELDIEHY K S H, BHUYAN S, MANDAL M. Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology, 2021, 61(5): 380-395.

doi: 10.1002/jobm.202000678 pmid: 33615511
[42]
WANG Y Y, HONG X L, LIU J C, ZHU J L, CHEN J R. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol. Food Microbiology, 2020, 91: 103506.

doi: 10.1016/j.fm.2020.103506
[43]
WAGNER E M, FISCHEL K, RAMMER N, BEER C, PALMETZHOFER A L, CONRADY B, ROCH F F, HANSON B T, WAGNER M, RYCHLI K. Bacteria of eleven different species isolated from biofilms in a meat processing environment have diverse biofilm forming abilities. International Journal of Food Microbiology, 2021, 349: 109232.

doi: 10.1016/j.ijfoodmicro.2021.109232
[44]
WU Y J, MA F, PANG X Y, CHEN Y P, NIU A J, TAN S, CHEN X, QIU W F, WANG G Y. Involvement of AprD in regulating biofilm structure, matrix secretion, and cell metabolism of meat-borne Pseudomonas fragi during chilled storage. Food Research International, 2022, 157: 111400.

doi: 10.1016/j.foodres.2022.111400
[45]
ZHAO Y N, REN J M, JIANG H Y, CHEN X F, XU M D, LI Y, ZHAO J Y, CHEN D, ZHANG K, LI H, LIU H. Metabolomics and lipidomics analyses delineating Hfq deletion-induced metabolic alterations in Vibrio alginolyticus. Aquaculture, 2021, 535: 736349.

doi: 10.1016/j.aquaculture.2021.736349
[46]
ZHANG W, GAO H L, HUANG Y M, WU S Q, TIAN J T, NIU Y N, ZOU C J, JIA C F, JIN M F, HUANG J, CHANG Z Y, YANG X X, JIANG D M. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546. International Journal of Biological Macromolecules, 2020, 165: 222-230.

doi: 10.1016/j.ijbiomac.2020.09.152
[47]
WANG N, GAO J, YUAN L, JIN Y J, HE G Q. Metabolomics profiling during biofilm development of Bacillus licheniformis isolated from milk powder. International Journal of Food Microbiology, 2021, 337: 108939.

doi: 10.1016/j.ijfoodmicro.2020.108939
[48]
ZHANG H, LIU J M, WEN R, CHEN Q, KONG B H. Metabolomics profiling reveals defense strategies of Pediococcus pentosaceus R1 isolated from Harbin dry sausages under oxidative stress. LWT, 2021, 135: 110041.

doi: 10.1016/j.lwt.2020.110041
[49]
LI F, ZHU L Z. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport. Chemosphere, 2014, 107: 58-64.

doi: 10.1016/j.chemosphere.2014.03.016
[50]
WANG Y B, WANG F F, ZHANG X S, CEN C N, FU L L. Transcription factors FabR and FadR regulate cold adaptability and spoilage potential of Shewanella baltica. International Journal of Food Microbiology, 2020, 331: 108693.

doi: 10.1016/j.ijfoodmicro.2020.108693
[51]
OREŠIČ M. Informatics and computational strategies for the study of lipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2011, 1811(11): 991-999.

doi: 10.1016/j.bbalip.2011.06.012
[52]
GAUCHER F, RABAH H, KPONOUGLO K, BONNASSIE S, POTTIER S, DOLIVET A, MARCHAND P, JEANTET R, BLANC P, JAN G. Intracellular osmoprotectant concentrations determine Propionibacterium freudenreichii survival during drying. Applied Microbiology and Biotechnology, 2020, 104(7): 3145-3156.

doi: 10.1007/s00253-020-10425-1
[53]
HAN J, MENG J, CHEN S Y, LI C. Integrative analysis of the gut microbiota and metabolome in rats treated with rice straw biochar by 16S rRNA gene sequencing and LC/MS-based metabolomics. Scientific Reports, 2019, 9: 17860.

doi: 10.1038/s41598-019-54467-6 pmid: 31780788
[54]
CHEN H, FUJITA M, FENG Q H, CLARDY J, FINK G R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(14): 5048-5052.
[55]
YU W C, CHEN Z, YE H, LIU P Z, LI Z P, WANG Y P, LI Q B, YAN S, ZHONG C J, HE N. Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis. Microbial Cell Factories, 2017, 16(1): 22.

doi: 10.1186/s12934-017-0642-8
[56]
YU Y Y, YAN F, CHEN Y, JIN C, GUO J H, CHAI Y R. Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Frontiers in Microbiology, 2016, 7: 1811.
[57]
ZHAO X, CHEN L, WU J E, HE Y, YANG H S. Elucidating antimicrobial mechanism of nisin and grape seed extract against Listeria monocytogenes in broth and on shrimp through NMR-based metabolomics approach. International Journal of Food Microbiology, 2020, 319: 108494.

doi: 10.1016/j.ijfoodmicro.2019.108494
[58]
刘苗苗. 基于转录组学和代谢组学解析柿单宁对食源性耐甲氧西林金黄色葡萄球菌的抑菌机理[D]. 杨凌: 西北农林科技大学, 2019.
LIU M M. Analysis of the antibacterial mechanism of persimmon tannin against food borne methicillin-resistant Staphylococcus aureus based on transcriptome and metabolomics[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[59]
SAYÉ M, MIRANDA M R, DI GIROLAMO F, DE LOS MILAGROS CÁMARA M, PEREIRA C A. Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter. PLoS ONE, 2014, 9(3): e92028.

doi: 10.1371/journal.pone.0092028
[1] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[2] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[3] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[4] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[5] YANG Jun,CHU PinPin,SONG Shuai,CAI RuJian,YANG DongXia,BIAN ZhiBiao,GOU HongChao,LI Yan,JIANG ZhiYong,LI ChunLing,YAN He. Construction of lpxM Gene Deletion Strain of Haemophilus parasuis and It's Some Biological Characteristics [J]. Scientia Agricultura Sinica, 2020, 53(16): 3394-3403.
[6] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[7] BAI Hao, HAN Xian-Gan, LIU Lei, DAN Xue-Qin, SONG Jun, LIU Rui, DONG Hong-Liang, LIU Hai-Wen, DING Chan, YU Sheng-Qing. The Regulation of Autoinducer-2 in Avian Pathogenic Escherichia coli [J]. Scientia Agricultura Sinica, 2012, 45(24): 5110-5116.
[8] LI Li,YANG Hong-jun,LIU Dai-cheng,HE Hong-bin,WANG Chang-fa,ZHONG Ji-feng,GAO Yun-dong
. Biofilm Formation and Analysis of Associated Genes Involved in Staphylococcus Isolates from Bovine Mastitis
[J]. Scientia Agricultura Sinica, 2011, 44(1): 160-166 .
[9] . Identification of 16SrDNA and Research on Acylated Homoserine Lactones Produced by Pseudomomas Isolated from the Fish [J]. Scientia Agricultura Sinica, 2007, 40(7): 1486-1491 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!