Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (10): 2021-2034.doi: 10.3864/j.issn.0578-1752.2023.10.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Investigation and Analysis of Nucleic Acid Detection Results of Viral Viruses in Large-Scale Goose Farms

SHAO Zhen(), DIAO YouXiang()   

  1. College of Animal Science and Technology, Shandong Agricultural University, Tai′an 271000, Shandong
  • Received:2022-01-13 Accepted:2022-05-23 Online:2023-05-16 Published:2023-05-17

Abstract:

【Objective】The author’s research group has long investigated the nucleic acid detection rate of common viral diseases in scaled goose farms in various provinces and cities in China, and found that many large-scaled goose farms in China could detect multiple viral nucleic acids at the same time, and this phenomenon was very common. In view of the lack of relevant data on the simultaneous detection of multiple viral diseases in large-scale goose farms in China, the purpose of this paper was to understand and analyze the simultaneous detection of nucleic acids of multiple viral diseases in large-scaled goose farms, so as to provide the theoretical guidance and scientific basis for the prevention and control of viral diseases in scaled goose farms.【Method】From May 2021 to October 2021, 737 diseased materials were collected from 47 scaled goose farms in Shandong, Heilongjiang, Sichuan, Jilin, Guangxi, Henan, Anhui, Liaoning, Hebei, Guizhou, Hunan and Inner Mongolia. These samples were detected for Muscovy duck reovirus (MDRV), duck reovirus (DRV), goose astroviruses (GAstV), fowl adenovirus (FAdV), reticuloendotheliosis virus (REV), Newcastle disease (NDV), goose parvovirus (GPV), goose circovirus (GoCV), goose hemorrhagic polyomavirus (GHPV), Tembusu virus (TMUV) and H9 subtype avian influenza virus (H9-AIV) by ordinary PCR and RT-PCR. The liver, spleen, lung and kidney were dissected from each sample, and total RNAs were extracted by Trizol method; a strand of cDNA was synthesized by reverse transcription with total RNA as the template, and then the complete cDNA was obtained by continuous amplification with cDNA as the template. Using these cDNA as template, the specific primers of MDRV, DRV, GAstV, FAdV, REV, NDV, GPV, GoCV, GHPV, TMUV and H9-AIV were used to amplify the target fragment by ordinary PCR reaction. All amplified fragments were analyzed by agarose gel electrophoresis, and some positive samples were sequenced. The obtained sequencing results were compared with the corresponding virus gene sequences published on GenBank, and the phylogenetic tree was drawn by Neighbor-Joining (N-J) method in MEGA 6.0 software for analysis.【Result】MDRV, DRV, GAstV, FAdV, REV, NDV, GPV, GoCV, GHPV, TMUV and H9-AIV showed that the detection rate of GAstV was the highest, with the value of 58.21%; the detection rates of REV and NDV were the lowest, with the value of 1.36% and 1.50%, respectively. A variety of viral nucleic acids could be detected simultaneously in geese to varying degrees, especially in two or three viral nucleic acids, accounting for 67.44% of the total samples. In the simultaneous detection rate of nucleic acids of the two viruses, GAstV and GoCV accounted for the largest proportion, which was 18.44%; MDRV, GAstV and GPV accounted for 36.28% of the simultaneous detection rates of the three virus nucleic acids.【Conclusion】It was further confirmed that multiple viral nucleic acids could be detected simultaneously in large-scaled goose farms in China. It was speculated that this might be one of the important reasons for the complexity of viral diseases and the difficulty of prevention and control in large-scaled goose farms in China.

Key words: scaled goose farm, nucleic acid test, phylogenetic analysis

Table 1

Primer sequences"

引物
Primer
引物序列(5′-3′)
Sequences (5′-3′)
目的片段长度
Product length (bp)
退火温度
Annealing temperature (℃)
MDRV-F CCGATTGGGCCGACATCTCAT 1002 55℃
MDRV-R ACTACCTCAAGTGGTCGCAA
DRV-F GGTGCGACTGCTGTATTTGGTAAC 513 53℃
DRV-R AATGGAACGATAGCGTGTGGG
GAstV-F ATTCTTGGCTCGGTTGTC 489 53℃
GAstV-F CCTGTGTTGCTCCTTCTC
FAdV-F ATGGGAGCSACCTAYTTCGACAT 590 52℃
FAdV-R AAATTGTCCCKRAANCCGATGTA
REV-F GAGACTCTATCAGGCTTATCGG 369 55℃
REV-R CAGTTCTTCTTCCAATGTCCC
NDV-F AGGGACTGAAGAGGAGGATT 427 54℃
NDV-R TGAGTGTGATTGTATTAGGTGG
GPV-F CCTGGCTATAAGTATCTTGG 593 52℃
GPV-R GTAGATGTGGTTGTTGTAGC
GoCV-F TAAATGCGAGTTTGATGTGTCT 564 51℃
GoCV-R CATTTAACCCCTTCCAAAGAGT
GHPV-F CAGGCAGTGACTGTTGCAACA 459 55℃
GHPV-R TGTGTTTTCATTCCGGGATGGG
TMUV-F CTGAAATAGCGGAAGCACT 520 52℃
TMUV-R AATCCCATTCTCCACTCTTGC
H9-F GGAGGTTGGTCAGGATTAGTTG 560 55℃
H9-R ACAAGAGATGAGGCGACAGT

Table 2

Information for samples of diseased geese"

取样地点
Location
样品数量(份)
Quantity of samples
鹅的品种
Sample type
鹅场养殖数量(只)
Number of goose farms
采集样品类型
Type of sample collected
山东
Shandong
265 三花鹅、朗德鹅、霍尔多巴吉、鹅、白鹅
Sanhua goose, Langde goose, Huoerduobaji goose, White goose
15000 肝、脾、肺、肾、拭子
Liver, Spleen, Lung, Kidney, Swab
黑龙江
Heilongjiang
145 籽鹅、三花鹅、霍尔多巴吉鹅、白鹅
Zi goose, Sanhua goose, Huoerduobaji goose, White goose
13000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
四川
Sichuan
79 天府肉鹅、三花鹅
Tianfu goose, Sanhua goose
8800 肝、脾、肺、肾、拭子
Liver, Spleen, Lung, Kidney, Swab
吉林
Jilin
72 籽鹅、三花鹅、五龙鹅
Zi goose, Sanhua goose, Wulong goose
12000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
广西
Guangxi
58 右江鹅、合浦鹅、扬州白鹅
Youjiang goose, Hepu goose, White goose
9000 拭子 Swab
河南
Henan
46 皖西白鹅、三花鹅
White goose, Sanhua goose
13000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
安徽
Anhui
35 皖西白鹅、霍尔多巴吉鹅
White goose, Huoerduobaji goose
11000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
辽宁
Liaoning
16 籽鹅、三花鹅、霍尔多巴吉鹅
Zi goose, Sanhua goose, Huoerduobaji goose
14000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
河北
Hebei
9 籽鹅、三花鹅、霍尔多巴吉鹅
Zi goose, Sanhua goose, Huoerduobaji goose
7000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
贵州
Guizhou
5 白鹅
White goose
7000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
湖南
Hunan
4 白鹅
White goose
8000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney
内蒙古
Inner Mongoria
3 三花鹅
Sanhua goose
6000 肝、脾、肺、肾
Liver, Spleen, Lung, Kidney

Table 3

Samples collection in different months"

月份 Month 样品数量(份)Quantity of samples
五月May 206
六月June 109
七月July 362
八月August 25
九月September 30
十月October 5

Table 4

Samples at different ages"

日龄 Days 样品数量(份)Quantity of samples
雏鹅Goslings 315
青年鹅Young goose 254
成鹅Adult goose 168

Table 5

Different virus detection results"

病毒
Virus
病毒检出数量(份)
Number of virus
检出率
Detection rate (%)
鹅星状病毒GAstV 429 58.21
鸭呼肠孤病毒DRV 319 43.28
番鸭呼肠孤病毒MDRV 288 39.08
鹅细小病毒GPV 262 35.55
鹅圆环病毒GoCV 239 32.43
禽腺病毒FAdV 234 31.75
坦布苏病毒TMUV 38 5.16
禽流感H9亚型病毒 32 4.34
鹅多瘤病毒GHPV 23 3.12
新城疫病毒NDV 11 1.49
禽网状内皮增生病毒REV 10 1.36

Table 6

Detection results of nucleic acids of different pathogens"

检出种类
Kind of detection
病料数量
Sample number
感染比例
Infection ratio (%)
单一检出single detection 100份 13.57
双重检出dual detection 282份 38.26
三重检出triple detection 215份 29.17
四重检出quadruple detection 111份 15.06
五重检出quintuple detection 24份 3.26

Table 7

Nucleic acid detection results of single virus of different pathogens"

病毒
Virus
病毒检出数量/份
Number of virus
检出占比
Detection ratio (%)
GAstV 42 42.00
GoCV 27 27.00
DRV 14 14.00
FAdV 7 7.00
MDRV 6 6.00
TMUV 3 3.00
GHPV 1 1.00

Table 8

Nucleic acid detection results of dual viruses of different pathogens"

病毒
Virus
病毒检出数量/份
Number of virus
检出占比
Detection ratio (%)
GAstV+GoCV 52 18.44
DRV+GoCV 47 16.67
MDRV+GAstV 39 13.83
FAdV+GoCV 26 9.22
DRV+GAstV 24 8.51
GAstV+GPV 23 8.16
DRV+FAdV 17 6.03
FAdV+ND 11 3.90
MDRV+GPV 9 3.19
MDRV+FAdV 6 2.13
GAstV+GHPV 5 1.77
MDRV+TMUV 4 1.42
DRV+GPV 4 1.42
GAstV+TMUV 4 1.42
GAstV+REV 3 1.06
REV+GHPV 2 0.71
MDRV+GHPV 1 0.35
FAdV+GPV 1 0.35
REV+GoCV 1 0.35
GPV+H9 1 0.35
GPV+GHPV 1 0.35
GoCV+GHPV 1 0.35

Table 9

Nucleic acid detection results of triple viruses of different pathogens"

病毒
Virus
病毒检出数量
Number of virus
检出占比
Detection ratio (%)
MDRV+GAstV+GPV 78 25.28
DRV+GAstV+GPV 20 9.30
DRV+FAdV+GoCV 19 8.84
MDRV+DRV+FAdV 18 8.37
MDRV+GAstV+TMUV 14 6.51
DRV+FAdV+GPV 14 6.51
DRV+GAstV+TMUV 6 2.79
MDRV+GAstV+GHPV 5 2.33
MDRV+DRV+GAstV 5 2.33
GAstV+GPV+GoCV 4 1.86
MDRV+GAstV+GoCV 3 1.40
MDRV+FAdV+GPV 3 1.40
DRV+GAstV+H9 3 1.40
DRV+GAstV+FAdV 3 1.40
DRV+GAstV+GoCV 3 1.40
GAstV+GPV+TMUV 3 1.40
MDRV+DRV+GoCV 2 0.93
MDRV+FAdV+GoCV 2 0.93
DRV+GPV+TMUV 2 0.93
MDRV+GAstV+FAdV 1 0.47
MDRV+DRV+GPV 1 0.47
MDRV+DRV+H9 1 0.47
DRV+GAstV+GHPV 1 0.47
DRV+GPV+GoCV 1 0.47
GAstV+GPV+H9 1 0.47
GAstV+GPV+GHPV 1 0.47
GAstV+REV+GPV 1 0.47

Table 10

Nucleic acid detection results of quadruple viruses of different pathogens"

病毒
Virus
病毒检出数量
Number of virus
检出占比
Detection ratio (%)
MDRV+DRV+FAdV+GPV 25 22.52
MDRV+DRV+FAdV+GoCV 13 11.71
DRV+GAstV+GPV+H9 12 10.81
DRV+GAstV+FAdV+GPV 10 9.00
DRV+GAstV+FAdV+GoCV 9 8.11
MDRV+GAstV+GPV+H9 8 7.21
MDRV+GAstV+GPV+GoCV 6 5.41
MDRV+DRV+GAstV+FAdV 6 5.41
DRV+GAstV+GPV+GHPV 4 3.60
MDRV+GAstV+FAdV+GoCV 3 2.70
MDRV+DRV+GAstV+GPV 2 1.80
DRV+GAstV+FAdV+TMUV 2 1.80
DRV+FAdV+GPV+GoCV 2 1.80
MDRV+GAstV+FAdV+GPV 1 0.90
MDRV+DRV+GPV+GoCV 1 0.90
MDRV+DRV+FAdV+H9 1 0.90
MDRV+DRV+GAstV+GoCV 1 0.90
MDRV+FAdV+GPV+GoCV 1 0.90
MDRV+FAdV+GoCV+H9 1 0.90
MDRV+FAdV+REV+GPV 1 0.90
DRV+FAdV+GoCV+H9 1 0.90
DRV+FAdV+REV+GPV 1 0.90

Table 11

Nucleic acid detection results of pentaviruses from different pathogens"

病毒
Virus
病毒检出数量
Number of virus
检出占比
Detection
ratio (%)
MDRV+DRV+GAstV+FAdV+GPV 8 33.33
MDRV+DRV+GAstV+FAdV+GoCV 5 20.83
MDRV+DRV+FAdV+GPV+GoCV 5 20.83
DRV+GAstV+FAdV+GPV+GoCV 2 8.33
MDRV+DRV+GAstV+GoCV+H9 1 4.17
MDRV+DRV+FAdV+GoCV+H9 1 4.17
DRV+GAstV+FAdV+GPV+H9 1 4.17
DRV+GAstV+FAdV+REV+GPV 1 4.17

Fig. 1

Statistical results of different ages"

Table 12

Statistics results in different seasons"

病毒
Virus
季节 Season
春季 Spring 夏季 Summer 秋季 Autumn
MDRV 48 221 19
DRV 37 278 4
GAstV 176 221 32
FAdV 0 227 7
REV 3 7 0
ND 0 11 0
GPV 75 187 0
GoCV 69 164 6
GHPV 18 5 0
TMUV 0 17 21
H9 17 15 0

Fig. 2

Phylogenetic analysis based on the genes GPV VP3"

Fig. 3

Phylogenetic analysis based on the genes GoCV V1"

Fig. 4

Phylogenetic analysis based on the genes GHPV Large T"

Fig. 5

Phylogenetic analysis based on the genes σC"

[1]
CHEN Q X, XU X, YU Z L, SUI C G, ZUO K J, ZHI G L, JI J, YAO L G, KAN Y C, BI Y Z, XIE Q M. Characterization and genomic analysis of emerging astroviruses causing fatal gout in goslings. Transboundary and Emerging Diseases, 2020, 67(2): 865-876.

doi: 10.1111/tbed.13410 pmid: 31680474
[2]
TING C H, LIN C Y, HUANG Y C, LIU S S, PENG S Y, WANG C W, WU H Y. Correlation between goose circovirus and goose parvovirus with gosling feather loss disease and goose broke feather disease in southern Taiwan. Journal of Veterinary Science, 2021, 22(1): e1.

doi: 10.4142/jvs.2021.22.e1 pmid: 33522153
[3]
LIU H M, HU D M, ZHU Y Q, XIONG H F, LV X, WEI C Q, LIU M M, YIN D D, HE C S, QI K Z, WANG G J. Coinfection of parvovirus and astrovirus in gout-affected goslings. Transboundary and Emerging Diseases, 2020, 67(6): 2830-2838.

doi: 10.1111/tbed.v67.6
[4]
陈柳, 余斌, 倪征, 华炯钢, 叶伟成, 云涛, 张存. 表达小鹅瘟病毒VP2蛋白重组鸭瘟病毒的构建及其生物学特性. 中国农业科学, 2016, 49(14): 2813-2821.

doi: 10.3864/j.issn.0578-1752.2016.14.015
CHEN L, YU B, NI Z, HUA J G, YE W C, YUN T, ZHANG C. Construction and characterization of a recombinant duck enteritis virus expressing VP2 gene of goose parvovirus. Scientia Agricultura Sinica, 2016, 49(14): 2813-2821. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.14.015
[5]
王小蕾, 刘月焕, 段会娟, 刘立新, 杨志远, 赵际成, 潘洁, 刘瑞华, 赵文奇, 田方杰, 吕金宝, 林健. 鸭坦布苏病毒的血凝性. 中国农业科学, 2019, 52(23)4415-4422.

doi: 10.3864/j.issn.0578-1752.2019.23.022
WANG X L, LIU Y H, DUAN H J, LIU L X, YANG Z Y, ZHAO J C, PAN J, LIU R H, ZHAO W Q, TIAN F J, J B, LIN J. Hemagglutinating activity of duck tembusu virus. Scientia Agricultura Sinica, 2019, 52(23)4415-4422. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.23.022
[6]
潘金金, 邹晓艳, 李鑫, 宿春虎, 柴茂, 姜逸, 胡艳芬, 赵国, 王彦红, 石火英, 陈素娟, 彭大新. 鹅源坦布苏病毒SHYG株的分离与鉴定. 中国农业科学, 2013, 46(5): 1044-1053.

doi: 10.3864/j.issn.0578-1752.2013.05.020
PAN J J, ZOU X Y, LI X, SU C H, CHAI M, JIANG Y, HU Y F, ZHAO G, WANG Y H, SHI H Y, CHEN S J, PENG D. Isolation and identification of tembusu virus strain SHYG from goose. Scientia Agricultura Sinica, 2013, 46(5): 1044-1053. (in Chinese)
[7]
WANG K, WANG C J, PAN L, WANG G J, QI K Z, LIU H M. Isolation and characterization of a goose parvovirus from Yan goose. Acta Virologica, 2016, 60(3): 333-335.

doi: 10.4149/av_2016_03_333
[8]
CHEN H, DOU Y G, TANG Y, ZHANG Z J, ZHENG X Q, NIU X Y, YANG J, YU X L, DIAO Y X. Isolation and genomic characterization of a duck-origin GPV-related parvovirus from cherry valley ducklings in China. PLoS One, 2015, 10(10): e0140284.

doi: 10.1371/journal.pone.0140284
[9]
YUN T, YU B, NI Z, YE W C, CHEN L, HUA J G, ZHANG C. Isolation and genomic characterization of a classical Muscovy duck reovirus isolated in Zhejiang, China. Infection, Genetics and Evolution, 2013, 20: 444-453.

doi: 10.1016/j.meegid.2013.10.004 pmid: 24140560
[10]
HAN K K, HUANG X M, LI Y, ZHAO D M, LIU Y Z, ZHOU X B, YOU Y, XIE X X. Complete genome sequence of goose tembusu virus, isolated from Jiangnan white geese in Jiangsu, China. Genome Announcements, 2013, 1(2): e00236-12.
[11]
LEE D H, PARK J K, YUK S S, ERDENE-OCHIR T O, KWON J H, LEE J B, PARK S Y, CHOI I S, LEE S W, SONG C S. Complete genome sequence of a natural reassortant H9N2 avian influenza virus found in bean goose (Anser fabalis): direct evidence for virus exchange between Korea and China via wild birds. Infection, Genetics and Evolution, 2014, 26: 250-254.

doi: 10.1016/j.meegid.2014.06.007
[12]
SUN Y J, DING N, DING S S, YU S Q, MENG C H, CHEN H J, QIU X S, ZHANG S L, YU Y, ZHAN Y, DING C. Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Molecular Immunology, 2013, 53(4): 321-327.

doi: 10.1016/j.molimm.2012.08.022 pmid: 23063767
[13]
WANG A Q, SUN L P, WANG M S, JIA R Y, ZHU D K, LIU M F, SUN K F, YANG Q, WU Y, CHEN X Y, CHENG A C, CHEN S. Identification of IFITM1 and IFITM3 in goose: gene structure, expression patterns, and immune responses against tembusu virus infection. BioMed Research International, 2017, 2017: 1-13.
[14]
KARDOĞAN Ö, MÜŞTAK H K, MÜŞTAK İ B. The first detection and characterization of goose parvovirus (GPV) in Turkey. Tropical Animal Health and Production, 2020, 53(1): 1-4.

doi: 10.1007/s11250-020-02433-0
[15]
NIU X, WANG H, WEI L, ZHANG M, YANG J, CHEN H, TANG Y, DIAO Y. Epidemiological investigation of H9 avian influenza virus, Newcastle disease virus, Tembusu virus, goose parvovirus and goose circovirus infection of geese in China. Transboundary and Emerging Diseases, 2018, 65(2): e304-e316.

doi: 10.1111/tbed.2018.65.issue-2
[16]
SHEN H X, ZHANG W, WANG H, ZHOU Y, SHAO S H. Identification of recombination between Muscovy duck parvovirus and goose parvovirus structural protein genes. Archives of Virology, 2015, 160(10): 2617-2621.

doi: 10.1007/s00705-015-2541-9 pmid: 26239342
[17]
WANG S, CHENG X X, CHEN S Y, LIN F Q, CHEN S L, ZHU X L, WANG J X. Evidence for natural recombination in the capsid gene VP2 of Taiwanese goose parvovirus. Archives of Virology, 2015, 160(8): 2111-2115.

doi: 10.1007/s00705-015-2491-2
[18]
ZHU Y M, ZHOU Z Q, HUANG Y, YU R S, DONG S J, LI Z, ZHANG Y S. Identification of a recombinant Muscovy duck parvovirus (MDPV) in Shanghai, China. Veterinary Microbiology, 2014, 174(3/4): 560-564.

doi: 10.1016/j.vetmic.2014.10.032
[19]
CHEN S, WANG A Q, SUN L P, LIU F, WANG M S, JIA R Y, ZHU D K, LIU M F, YANG Q, WU Y, SUN K F, CHEN X Y, CHENG A C. Immune-related gene expression patterns in GPV- or H9N2-infected goose spleens. International Journal of Molecular Sciences, 2016, 17(12): 1990.

doi: 10.3390/ijms17121990
[20]
LIN F Q, GAO C, CHEN S Y, ZHU X L, CHENG X X, WANG S, CHEN S L, CAI X, LI Z, MA C Q, ZHAO J R. Immunosuppression effect of co-infection with MDRV and H9 AIV on thymus in Muscovy ducks. Wei Sheng Wu Xue Bao, 2011
[21]
HASSAN K E, ALI A, SHANY S A S, EL-KADY M F. Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens. Research in Veterinary Science, 2017, 115: 356-362.

doi: S0034-5288(17)30022-X pmid: 28692924
[22]
ELADL A H, MOSAD S M, EL-SHAFEI R A, SALEH R M, ALI H S, BADAWY B M, ELSHAL M F. Immunostimulant effect of a mixed herbal extract on infectious bursal disease virus (IBDV) vaccinated chickens in the context of a co-infection model of avian influenza virus H9N2 and IBDV. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 72: 101505.

doi: 10.1016/j.cimid.2020.101505
[23]
GOWTHAMAN V, SINGH S D, DHAMA K, RAMAKRISHNAN M A, MALIK Y P S, GOPALA KRISHNA MURTHY T R, CHITRA R, MUNIR M. Co-infection of Newcastle disease virus genotype XIII with low pathogenic avian influenza exacerbates clinical outcome of Newcastle disease in vaccinated layer poultry flocks. VirusDisease, 2019, 30(3): 441-452.

doi: 10.1007/s13337-019-00533-6 pmid: 31803812
[24]
ROUSSAN D A, HADDAD R, KHAWALDEH G. Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan. Poultry Science, 2008, 87(3): 444-448.

doi: 10.3382/ps.2007-00415 pmid: 18281569
[25]
YU G L, LIN Y, DOU Y G, TANG Y, DIAO Y X. Prevalence of fowl adenovirus serotype 4 and Co-infection by immunosuppressive viruses in fowl with hydropericardium hepatitis syndrome in Shandong Province, China. Viruses, 2019, 11(6): 517.

doi: 10.3390/v11060517
[26]
CHEN S, ZHOU Q, CHENG B B, YAN B, YAN X L, ZHAO Q R, WANG M S, JIA R Y, ZHU D K, LIU M F, CHEN X Y, CHENG A C. Age-related development and tissue distribution of T cell markers (CD4 and CD8a) in Chinese goose. Immunobiology, 2015, 220(6): 753-761.

doi: 10.1016/j.imbio.2014.12.020 pmid: 25616911
[27]
WAN C H, CHEN C T, CHENG L F, LIU R C, FU G H, SHI S H, CHEN H M, FU Q L, HUANG Y. Genomic analysis of Sheldrake origin goose hemorrhagic polyomavirus, China. Journal of Veterinary Science, 2018, 19(6): 782.

doi: 10.4142/jvs.2018.19.6.782 pmid: 30304886
[28]
GARMYN A, VERLINDEN M, BOSSELER L, ADRIAENSEN C, MARTEL A. Persistent goose hemorrhagic polyomavirus infection on a Belgian goose farm. Avian Diseases, 2017, 61(4): 536-538.

doi: 10.1637/11604-020317-Case.1 pmid: 29337609
[29]
MÉSZÁROS I, TÓTH R, BÁLINT A, DÁN A, JORDAN I, ZÁDORI Z. Propagation of viruses infecting waterfowl on continuous cell lines of Muscovy duck (Cairina moschata) origin. Avian Pathology: Journal of the W V P A, 2014, 43(4): 379-386.

doi: 10.1080/03079457.2014.939941
[30]
CORRAND L, GELFI J, ALBARIC O, ETIEVANT M, PINGRET J L, GUERIN J L. Pathological and epidemiological significance of Goose haemorrhagic polyomavirus infection in ducks. Avian Pathology, 2011, 40(4): 355-360.

doi: 10.1080/03079457.2011.582481 pmid: 21812713
[31]
PINGRET J L, BOUCRAUT-BARALON C, GUÉRIN J L. Goose haemorrhagic polyomavirus infection in ducks. Veterinary Record, 2008, 162(5): 164.

pmid: 18245753
[32]
TANG Y, DIAO Y, CHEN H, OU Q, LIU X, GAO X, YU C, WANG L. Isolation and genetic characterization of a tembusu virus strain isolated from mosquitoes in Shandong, China. Transboundary and Emerging Diseases, 2015, 62(2): 209-216.

doi: 10.1111/tbed.12111 pmid: 23711093
[33]
TANG Y, DIAO Y, YU C, GAO X, JU X, XUE C, LIU X, GE P, QU J, ZHANG D. Characterization of a tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in northern China. Transboundary and Emerging Diseases, 2013, 60(2): 152-158.

doi: 10.1111/j.1865-1682.2012.01328.x pmid: 22515847
[34]
YU X P, ZHU C, ZHENG X T, HE S C, LIU X N. Genome analysis and epidemiological investigation of goose circovirus detected in Eastern China. Virus Genes, 2007, 35(3): 605-609.

pmid: 17619136
[1] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[2] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[3] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[4] WANG Ye, HAN Lei, DONG Jie, HUANG JiaXing, WU Jie. Identification and Characteristics of Odorant Receptors in Bumblebee, Bombus lantschouensis [J]. Scientia Agricultura Sinica, 2017, 50(10): 1904-1913.
[5] SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng. Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.
[6] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
[7] ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049.
[8] XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan. Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3071-3078.
[9] GE Song, JIANG Wan, HE Sheng-hu, YU Yong-tao, ZHANG Lei-lei, GUO Shu-qiang, WANG Jing. Isolation and Identification of Dermatophytes from Beef Cattle in Ningxia [J]. Scientia Agricultura Sinica, 2015, 48(14): 2876-2883.
[10] GONG Xiao-Dong-1, ZHANG Xiao-Yu-1, TIAN Lan-1, WANG Xing-Yi-1, LI Po-2, ZHANG Pan-1, WANG Yue-1, FAN Yong-Shan-3, HAN Jian-Min-1, GU Shou-Qin-1, DONG Jin-Gao-1. Genome-Wide Identification MAPK Superfamily and Establishment of the Model of MAPK Cascade Pathway in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724.
[11] YAN Wei1, SHEN Zhong-yuan, TANG Xu-dong, XU Li, LI Qian-long, XIAO Sheng-yan, YUE Ya-jie, FU Xu-liang. Sequencing and Phylogenetic Analysis of the RPB1 Gene of Nosema sp. PA [J]. Scientia Agricultura Sinica, 2014, 47(23): 4736-4744.
[12] ZENG Ji-Wu, JIANG Bo, WU Bo, ZHONG Yun, CHENG Chun-Zhen, MU Hong-Na, GAN Lian-Sheng, PENG Cheng-Ji, ZHONG Guang-Yan, YI Gan-Jun. Morphological and Molecular Studies on a Wild Citrus ‘Longmen Xiangcheng’ [J]. Scientia Agricultura Sinica, 2014, 47(2): 334-343.
[13] AN Hai-Shan-1, YANG Ke-Qiang-1, 2 . Sequence Analysis of NBS-Type RGAs and Their Relationship with Anthracnose Resistance in Walnut [J]. Scientia Agricultura Sinica, 2014, 47(2): 344-356.
[14] ZHOU Zhe, ZHANG Cai-Xia, ZHANG Li-Yi, WANG Qiang, LI Wu-Xing, TIAN Yi, CONG Pei-Hua. Bioinformatics and Expression Analysis of the LysM Gene Family in Apple [J]. Scientia Agricultura Sinica, 2014, 47(13): 2602-2612.
[15] CHENG Xiao-Juan-12, YAN Shan-Chun-1, HUANG Yong-Ping-2, TAN An-Jiang-2. Cloning and Functional Analysis of pdp1 in Ostrinia furnacalis (Lepidoptera: Crambidae) [J]. Scientia Agricultura Sinica, 2013, 46(20): 4272-4283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!