Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4516-4526.doi: 10.3864/j.issn.0578-1752.2020.21.019

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Effects of Dilute Sulfuric Acid Pretreatment on Chemical Composition and Characterization Structure of Hybrid Pennisetum (Pennisetum americanum×P.purpureum) Lignocellulose

GAO FengQin(),JING YuanYuan,DE Ying,WAN QiHao,LIU YingHao, ()   

  1. Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010
  • Received:2019-05-22 Accepted:2020-09-16 Online:2020-11-01 Published:2020-11-11
  • Contact: E-mail:gaofq1211@126.com;tana_1980@163.com

Abstract:

【Objective】 Study the effects of H2SO4 concentration, solid-liquid ratio, treatment time and temperature on lignocellulose degradation efficiency of hybrid pennisetum under dilute sulfuric acid pretreatment, analyze the mechanism of dilute sulfuric acid on lignocellulose degradation, and screen the best pretreatment process.【Method】 Four single factors: H2SO4 concentration (0.5%, 1.0%, 1.5%, 2.0%, 2.5%), solid-liquid ratio (1﹕6, 1﹕8, 1﹕10, 1﹕12, 1﹕14), time (15, 30, 45, 60, 90 min) and temperature (80, 100, 110, 120, 125℃) were tested. Five levels of each factor were selected and repeated three times to analyze the effects of single factor on solid decomposition rate, cellulose degradation rate, hemicellulose degradation rate, lignin removal rate and hydrolyzed sugar. On the basis of single factor experiment, L8 (24) orthogonal test with 4 factors and 2 levels was used to determine the main influencing factors, and SEM and XRD analysis were carried out for the hybrid pennisetum under the optimal processing conditions. 【Result】 The results of single factor test showed that the degradation rate of hemicellulose was higher than that of lignin under all factors. With the increase of H2SO4 concentration, the degradation rate of cellulose and hemicellulose increased, and the lignin removal rate decreased; the yield of glucose produced by cellulose hydrolysis increased with the increase of concentration, but the content of xylose decreased gradually. The low concentration of H2SO4 (0.5%-1.5%) promoted the degradation and digestion of solid substances of hybrid pennisetum, increased concentration (>1.5%) further did not significantly change the solid degradation. The influence of solid-liquid ratio on each index was small,and when the solid-liquid ratio increased to 1﹕10, the solid decomposition rate, hemicellulose and lignin removal reached the maximum. The pretreatment time had no obvious effect on solid decomposition rate, hemicellulose and lignin degradation, but promoted hemicellulose degradation and glucose production. Temperature has obvious effects on solid decomposition rate, degradation of cellulose, hemicellulose and lignin, and yield of hydrolyzed sugar, and 100℃ is an important critical value, and effective degradation of lignocellulose need temperature above 100℃. The orthogonal test results showed that the factors affecting hemicellulose degradation were temperature - concentration - time - solid - liquid ratio. After pretreatment with dilute sulfuric acid, the structure of lignocellulose collapsed, non-cellulose was removed, cellulose bundles were exposed (SEM), and the degree of crystallization and polymerization of cellulose was increased (XRD). 【Conclusion】 Hemicellulose was mainly degraded by dilute sulfuric acid pretreatment, but lignin was poorly degraded. Temperature is the most important factor, followed by H2SO4 concentration. Under the influence of four factors, the optimum technological conditions are as follows: concentration 1.5%, solid-liquid ratio 1﹕6, time 15 min, temperature 120℃.

Key words: hybrid pennisetum, lignocellulose, dilute sulfuric acid pretreatment, optimal conditions

Table 1

Single factor experimental design of hybrid pennisetum with dilute sulfuric acid pretreatment"

浓度
Concentration (%)
固液比
Solid-liquid ratio (g·mL-1)
时间
Time (min)
温度
Temperature (℃)
单因素水平
Levels of single factor
0.5 1﹕6 15 80
1.0 1﹕8 30 100
1.5 1﹕10 45 110
2.0 1﹕12 60 120
2.5 1﹕14 90 125
固定因子 Fixed factors 1﹕8 g·mL-1 30 min 120℃ 2.0% 30 min 120℃ 2.0% 1﹕8 g·mL-1 120℃ 2.0% 1﹕8 g·mL-1 30 min

Table 2

Incomplete factorial experimental design of hybrid pennisetum with dilute sulfuric acid pretreatment"

实验序号
Experiment No.
浓度
Concentration (%)
固液比
Solid-liquid ratio (g·mL-1)
时间
Time (min)
温度
Temperature (℃)
1 1 (1.0) 1 (1﹕6) 1 (15) 1 (110)
2 1 1 1 2 (120)
3 1 2 (1﹕8) 2 (30) 1
4 1 2 2 2
5 2 (1.5) 1 2 1
6 2 1 2 2
7 2 2 1 1
8 2 2 1 2

Table 3

Contents of chemical constituents of hybrid pennisetum"

项目Item 含量Content (%)
纤维素 Cellulose 35.57
半纤维素 Hemicellulose 27.65
木质素Lignin 11.23
中性洗涤纤维 Neutral detergent fiber, NDF 48.36
酸性洗涤纤维 Acid detergent fiber, ADF 76.45
粗灰分Ash 3.70
干物质Dry matter 95.20

Fig. 1

Influence of single factor on solid decomposition rate of hybrid pennisetum under dilute sulfuric acid pretreatment The difference between different lowercase alphabet of the same legend is significant (P<0.05). The same below"

Fig. 2

Lignocellulosic degradation of hybrid pennisetum after dilute sulfuric acid pretreatment of different concentrations"

Table 4

Influence of single factor on hydrolyzed sugar of hybrid pennisetum under dilute sulfuric acid pretreatment"

浓度
Concentration (%)
葡萄糖
Glucose
(g·L-1)
固液比
Solid-liquid ratio
(g·mL-1)
葡萄糖
Glucose
(g·L-1)
时间
Time
(min)
葡萄糖
Glucose
(g·L-1)
温度
Temperature
(℃)
葡萄糖
Glucose
(g·L-1)
0.5 0.77±0.03e 1﹕06 4.54±0.47a 15 1.98±0.09c 80 0.34±0.01e
1.0 2.04±0.16d 1﹕08 3.93±0.06b 30 2.56±0.40bc 100 0.96±0.05d
1.5 3.36±0.22c 1﹕10 3.36±0.22c 45 2.83±0.09bc 110 1.82±0.08c
2.0 3.72±0.25b 1﹕12 3.31±0.31cd 60 3.92±0.20ab 120 3.36±0.22b
2.5 4.26±0.22a 1﹕14 2.82±0.04d 90 4.68±0.22a 125 3.70±0.13a
浓度
Concentration (%)
木糖
Xylose
(g·L-1)
固液比
Solid-liquid ratio
(g·mL-1)
木糖
Xylose
(g·L-1)
时间
Time
(min)
木糖
Xylose
(g·L-1)
温度
Temperature
(℃)
木糖
Xylose
(g·L-1)
0.5 15.78±0.33a 1﹕06 13.23±0.22c 15 15.78±0.63a 80 19.80±0.21a
1.0 15.18±0.20a 1﹕08 15.66±0.76a 30 15.60±1.57a 100 16.50±0.36b
1.5 13.52±0.48b 1﹕10 14.81±0.25b 45 15.05±0.42a 110 16.33±0.33b
2.0 13.19±0.42b 1﹕12 14.44±0.22b 60 15.22±0.40a 120 13.98±0.65c
2.5 13.16±0.66b 1﹕14 14.35±0.43b 90 13.31±0.49b 125 13.47±0.37c

Table 5

Orthogonal experiment evaluating dilute sulfuric acid pretreatment on hybrid pennisetum"

编号
Experiment No.
因子Factors 纤维素保留率Cellulose residual (%) 半纤维素降解率Himcellulose degradation (%)
浓度
Concentration (%)
固液比
Solid-liquid ratio (g·mL-1)
时间
Time (min)
温度
Temperature (℃)
1 1 (1.0) 1 (1﹕6)
1 (15)
1 (110) 93.38 58.12
2 2 (120) 93.77 65.50
3 2 (1﹕8)
2 (30)
1 (110) 98.46 63.11
4 2 (120) 93.80 80.78
5 2 (1.5)
1 (1﹕6) 2 (30) 1 (110) 99.96 71.13
6 2 (120) 92.95 85.74
7 2 (1﹕8) 1 (15) 1 (110) 91.15 67.15
8 2 (120) 91.05 85.73
纤维素保留率Cellulose residual (%) K1 379.40 380.06 369.34 382.94 ∑=754.51
K2 375.11 374.45 385.17 371.57
K1 94.85 95.01 92.33 95.74
K2 93.78 93.61 96.29 92.89
R 1.07 1.40 3.96 2.84
半纤维素降解率Himcellulose degradation (%) K1 267.51 280.48 276.50 259.51 ∑=577.25
K2 309.74 296.77 300.76 317.74
K1 66.88 70.12 69.12 64.88
K2 77.44 74.19 75.19 79.44
R 10.56 4.07 6.07 14.56

Fig. 3

X-ray diffraction of hybrid pennisetum before and after dilute sulfuric acid pretreatment"

Fig. 4

SEM image of lignocellulose surface structure before and after dilute sulfuric acid pretreatment on hybrid pennisetum A: External surface of lignocellulose before pretreatment (×1000); B: Inner surface of lignocellulose before pretreatment (×600); C: External surface of lignocellulose after pretreatment (×1000); D: Inner surface of lignocellulose after pretreatment (×600)"

[1] 高凤芹. 柳枝稷发酵产甲烷过程中纤维素降解机制及微生物多样性变化[D]. 北京: 中国农业大学, 2015.
GAO F Q. Cellulose hydrolysis mechanism and microbial diversity change during anaerobic digestion of switchgrass for methane[D]. Beijing: China Agriculture University, 2015. (in Chinese)
[2] HOSSEINI K E, DAHADHA S BAZYAR L A A, AZIZI A, ELBESHBISHY E. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. Journal of Environmental Management, 2019,233:774-784.
pmid: 30314871
[3] ZHENG Y, ZHAO J, XU F Q, LI Y B. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 2014,42(1):35-51.
[4] MÄKELÄ M R, BREDEWEG E L, MAGNUSON J K, BAKER S E, DE VRIES R P, HILDÉN K. Fungal ligninolytic enzymes and their applications. Microbiology Spectrum, 2016,4(6):1-13.
[5] RICHA A, NILESH K S, SACHIN K, RAJESH K S. Lignocellulosic ethanol: Feedstocks and bioprocessing. Bioethanol Production from Food Crops, 2019, 165-185.
[6] GAO F Q, YANG F Y, ZHOU H, SUN Q Z, ZHANG Y W, MICHAEL A B. Evaluation of processing technology for Triarrhena sacchariflora(Maxim.) Nakai for ethanol production. PLoS ONE, 2014,9(12):e114399.
pmid: 25490204
[7] YANG H Y, SHI Z J, XU G F, QIN Y J, DENG J, YANG J. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresource Technology, 2019,274:261-266.
doi: 10.1016/j.biortech.2018.11.088 pmid: 30529330
[8] SUMIT K V, YOGENDRA S. Deterministic and stochastic optimization of acid pretreatment for lignocellulosic ethanol production. Computer Aided Chemical Engineering, 2017,40:2149-2154.
[9] LEE J W, KIM J Y, JANG H M, LEE M W, PARK J M. Sequential dilute acid and alkali pretreatment of corn stover: Sugar recovery efficiency and structural characterization. Bioresource Technology, 2015,182:296-301.
pmid: 25706555
[10] DEMARTINI J D, PATTATHIL S, MILLER J S, LI H J, HAHN M G, WYMAN C E. Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy & Environmental Science, 2013,6(3):898-909.
[11] SHIMIZU F L, MONTERIRO P Q, GHIRALDI P H C, MELATI R B, PAGNOCCA F C, SOUZA W, ANNA C S, BRIENZO M. Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops and Products, 2018,115:62-68.
[12] 佀胜利. 能源植物芒草细胞壁结构组成与糖化发酵关系的研究[D]. 武汉: 华中农业大学, 2015.
SI S L. Characterization of the wall polymer features that affect biomass saccharification and ethanol production in Miscanthus[D]. Wuhan: Huazhong Agriculture University, 2015. (in Chinese)
[13] 希默尔. 生物质抗降解屏障-结构植物细胞壁产生物能. 北京: 化学工业出版社, 2010.
HIMMEL M E. Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy. Beijing: Chemical Industry Press, 2010. (in Chinese)
[14] 尤毅娜, 邓红, 孟永宏, 房杰, 郭玉蓉, 张英. 碱性双氧水预处理对苹果渣化学组分和酶解得率的影响. 中国农业科学, 2016,49(8):1559-1566.
YOU Y N, DENG H, MENG Y H, FANG J, GUO Y R, ZHANG Y. The impact of alkaline hydrogen peroxide pretreatment on the chemical composition and enzymatic hydrolyzability of apple pomace. Scientia Agricultura Sinica, 2016,49(8):1559-1566. (in Chinese)
[15] IDREES M, ADNAN A, MALIK F, QURESHI F A. Enzymatic saccharification and lactic acid production from banana pseudo-stem through optimized pretreatment at lowest catalyst concentration. Excli Journal, 2013,12(4):269-281.
[16] MIKULSKI D, KLOSOWSKI G. Efficiency of dilute sulfuric acid pretreatment of distillery stillage in the production of cellulosic ethanol. Bioresource Technology, 2018,268:424-433.
pmid: 30103168
[17] SHI S, GUAN W J, KANG L, LEE Y Y. Reaction kinetic model of dilute-acid catalyzed hemicellulose hydrolysis of corn stover under high-solid condition. Industrial & Engineering Chemistry Research, 2017,56(39):10990-10997.
[18] LEE C, ZHENG Y, VANDERGHEYNST J S. Effects of pretreatment conditions and post-pretreatment washing on ethanol production from dilute acid pretreated rice straw. Biosystems Engineering, 2015,137:36-42.
[19] SIEVERS D A, KUHN E M, TUCKER M P, MCMILLAN J D. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolysate. Bioresource Technology, 2017,243:474-480.
doi: 10.1016/j.biortech.2017.06.144 pmid: 28689140
[20] 王晓娟, 杨阳, 张晓强, 姜少俊, 宋瑜, 周海辰, 金樑. 木质素与生物燃料生产:降低含量或解除束缚? 中国农业科学, 2015,48(2):229-240.
WANG X J, YANG Y, ZHANG X Q, JIANG S J, SONG Y, ZHOU H C, JIN L. To make biofuel: cutting the lignin or loosening lignin’s grip? Scientia Agricultura Sinica, 2015,48(2):229-240. (in Chinese)
[21] BALLESTEROS I, BALLESTEROS M, MANZANARES P, NEGRO M J, OLIVA J M, SÁEZ F. Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochemical Engineering Journal, 2008,42(1):84-91.
[22] 王文强, 周汉林, 唐军. 狼尾草属牧草研究及利用进展. 热带农业科学, 2018, 38(6): 49-55+78.
WANG W Q, ZHOU H L, .TANG J. Research advances on development and utilization of forage of Pennisetum spp. Chinese Journal of Tropical Agriculture, 2018, 38(6): 49-55+78.(in Chinese)
[23] 王敬枫, 郝茜珣, 侯新村, 张军华. 碱性亚硫酸盐预处理对杂交狼尾草酶水解特性的影响. 林业工程学报, 2018,3(2):95-101.
WANG J F, HAO X X, HOU X C, ZHANG J H. Effect of alkaline sulfite pretreatment on enzymatic hydrolysis of hybrid China wolftailgrass. Journal of Forestry Engineering, 2018,3(2):95-101. (in Chinese)
[24] VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991,74(10):3583-3597.
pmid: 1660498
[25] 吉喆. 稀酸碱预处理过程中植物细胞壁解构研究[D]. 北京: 北京林业大学, 2016.
JI Z. Deconstruction of plant cell wall during dilute acid and alkali pretreatment[D]. Beijing: Beijing Forestry University, 2016. (in Chinese)
[26] 刘荣厚. 燃料乙醇的制取工艺与实例. 北京: 化学工业出版社, 2008.
LIU R H. Production Technology and Practice of Fuel Ethanol . Beijing: Chemical Industry Press, 2008. (in Chinese)
[27] GEDDES C C, PETERSON J J, ROSLANDER C, ZACCHI G, MULLINNIX M T, SHANMUGAM K T, INGRAM L O. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresource Technology, 2010,101(6):1851-1857.
pmid: 19880314
[28] BENSAH E C, MENSAH M. Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. International Journal of Chemical Engineering, 2013(11):1-21.
[29] 钟佳, 王刚, 谭力, 孙照勇, 汤岳琴, 木田建次. 稀酸及稀酸-稀碱联合预处理对油菜秸秆酶糖化影响的研究. 中国环境科学学会, 2014: 266-270.
ZHONG J, WANG G, TAN L, SUN Z Y, TANG Y Q, BENTIAN C J. Effects of dilute acid and dilute acid-dilute alkali pretreatment on enzymatic saccharification of rape straw. Academic Annual Meeting of the Chinese Society of Environmental Sciences, 2014: 266-270. (in Chinese)
[30] 朱忆魁, 徐栩坚, 罗伟儒, 邓小梅, 吴蔼民, 李慧玲. 稀酸和稀碱预处理对四种不同生物质资源制备还原糖的影响. 生物资源, 2018,40(5):400-404.
ZHU Y K, XU X J, LUO W R, DENG X M, WU A M, LI H L. Effects of dilute acid and alkali pretreatments on reducing sugar production from four different kinds of biomass. Biotic Resources, 2018,40(5):400-404. (in Chinese)
[31] KUMAR L, CHANDRA R, CHUNG P A, SADDLER J. Can the same steam pretreatment conditions be used for the most softwood to achieve good, enzymatic hydrolysis and sugar yields? Bioresource Technology, 2010,101(20):7827-7833.
doi: 10.1016/j.biortech.2010.05.023 pmid: 20570139
[32] 周丹丹, 侯庆喜, 刘苇, 冯清. 利用CaO/PAC选择性去除预水解液中木质素. 林产化学与工业, 2016,36(5):75-80.
ZHOU D D, HOU Q X, LIU W, FENG Q. Selectively removing lignin from pre-hydrolysis liquor by combined CaO/PAC method. Chemistry and Industry of Forest Products, 2016,36(5):75-80. (in Chinese)
[33] JÖNSSON L J, MARTÍN C, Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 2016,199:103-112.
pmid: 26482946
[34] CHEN L L, BERNHARD K, CHITHRA M, ROHIT A, HENRIK V S, MANFRED A, KENNETH P V, BLAKE A S, SEEMA S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 2010,101:4900-4906.
pmid: 19945861
[35] 江滔, 路鹏, 李国学. 玉米秸秆稀酸水解糖化法影响因子的研究. 农业工程学报, 2008,24(7):175-180.
JIANG T, LU P, LI G X. Influencing factors in saccharification of corn stover by dilute sulfuric acid hydrolyzing method. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(7):175-180. (in Chinese)
[36] 胡秋龙, 熊兴耀, 谭琳, 苏小军, 贺应龙, 刘祥华, 易锦琼. 木质纤维素生物质预处理技术的研究进展. 中国农学通报, 2011,27(10):1-7.
HU Q L, XIONG X Y, TAN L, SU X J, HE Y L, LIU X H, YI J Q. Advances in pretreatment technologies of lignocellulosic biomass. Chinese Agricultural Science Bulletin, 2011,27(10):1-7. (in Chinese)
[37] LI Q M, LI X J, JIANG Y L, XIONG X Y, HU Q L, TAN X H, WANG K Q, SU X J. Analysis of degradation products and structural characterization of giant reed and Chinese silvergrass pretreated by 60Co-γ irradiation. Industrial Crops and Products, 2016,83:307-315.
[1] LIU Chang-li,WANG Xiao-fen,GUO Peng,LI Pei-pei,SHEN Hai-long,CUI Zong-jun
. Construction of A Normal Temperature Straw-rotting Microbial Community and Its Character in Degradation of Rice Straw
[J]. Scientia Agricultura Sinica, 2010, 43(1): 105-111 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!