Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (23): 4621-4629.doi: 10.3864/j.issn.0578-1752.2015.23.003

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characterizing and Quantifying Soil Resilience for Ecosystem Services

CHENG Kun, YUE Qian, XU Xiang-rui, YAN Ming, PAN Gen-xing   

  1. Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095
  • Received:2015-09-21 Online:2015-12-01 Published:2015-12-01

Abstract: 2015 is the International Year of Soil, which indicates soils are the central consideration of what constitutes sustainable development. However, due to direct or indirect human disturbance such as land use change, soil management and land degradation, soil becomes fragile under the global change pressures. Soils play a critical role in delivering ecosystem services. The co-benefits or trade-offs between various ecosystem services provided by soils are main issues focused by the researchers. Soil carbon, nutrient and water cycles, and soil biodiversity could be related to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. Characterizing and quantifying soil resilience for ecosystem services are main challenges to seek the sustainable soil management for improving soil resilience. Developing the ecosystem service indicators system and assessing the co-benefits or trade-offs between various ecosystem services using multiscale, multi-objectives, multi-factors approaches are both focused on the process of research. Furthermore, model simulation is one of the key approaches for the quantification of soil resilience for ecosystem services.

Key words: soil resilience, ecosystem service, sustainable development, characterization, quantification

[1]    Smith P, Bustamante M, House J I, Sobocká J, Harper R, Pan G X, West P, Clark J, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo M F, Elliott J A, McDowell R, Griffiths R I, Asakawa S, Bondeau A, Jain A K, Meersmans J, et al. Global change pressures on soils from land use and management. Global Change Biology, 2015, doi: 10.1111/gcb.13068.
[2]    Richter D D, Hofmockel M, Callaham M A, Powlson D S, Smith P. Long-term soil experiments: keys to managing Earth’s rapidly changing ecosystems. Soil Science Society of America Journal, 2007, 71: 266-279.
[3]    Smith P, Cotrufo M F, Rumpel C, Paustian K, Kuikman P, Elliott J A, McDowell R, Griffiths R I, Asakawa S, Bustamante M, House J I, Sobocka J, Harper R, Pan G, West P C, Gerber J S, Clark J M, Adhya T, Scholes R J, Scholes M C. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil Discussions, 2015, doi: 10.5194/soild-2-537-2015.
[4]    Guo L B, Gifford R M. Soil carbon stocks and land use change: A meta-analysis. Global Change Biology, 2002, 8: 345-360.
[5]    Murty D, Kirschbaum M U F, McMurtrie R E, McGilvray H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 2002, 8: 105-123.
[6]    张旭辉, 李典友, 潘根兴, 李恋卿, 林凡, 许信旺. 中国湿地土壤碳库保护与气候变化问题. 气候变化研究进展, 2008, 4: 202-208.
Zhang X H, Li D Y, Pan G, Li L Q, Lin F, Xu X W. Conservation of wetland soil C stock and climate change of China. Advances in Climate Change Research, 2008, 4: 202-208. (in Chinese)
[7]    Burney J A, Davis S J, Lobell D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences, 2010, 107: 12052-12057.
[8]    Carpenter S R, Caraco N F, Correll D L, Howarth R W, Sharpley A N, Smith V H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 1998, 8: 559-568.
[9]    West P C, Gerber J S, Engstrom P M, Mueller N D, Brauman K A, Carlson K M, Cassidy E S, Johnston M, MacDonald G K, Ray D K, Siebert S. Leverage points for improving global food security and the environment. Science, 2014, 345: 325-328.
[10]   Banwart S. Save our soils. Nature, 2011, 474(7350): 151-152.
[11]   Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the USA, 2011, 108(50): 20260-20264.
[12]   Montgomery D R. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the USA, 2007, 104: 13268-13272.
[13]   Millennium Ecosystem Assessment. Ecosystems and Human Well- being. Washington, DC: Island Press, 2005.
[14]   UNEP. Convention on Biological Diversity, Secretariat of the Convention on Biological Diversity, UNEP, Montreal, Quebec, H2Y1N9, Canada, 2010.
[15]   Boyd J, Banzhaf H S. What are ecosystem services? The need for standardized environmental accounting units. Resources for the Future, Discussion Paper No. RFF DP, 2006, 06-02.
[16]   Ramirez K S, Bardgett R D, Fricks B, Montanarella L, Six J, van der Putten W H, Diana W, Nele A, Fredrick A, Steven B, David B, Helaina B, Deborah B, Viktor B, Lijbert B, Colin C, Kathryn C, Philippe L, Zoe L, Phil M, et al. White Paper on the First Open Meeting of the Global Soil Biodiversity Initiative (GSBI). Global Soil Biodiversity Initiative, 2012. URL: http://www.globalsoilbiodiversity. org/sites/ default/files/WhitePaper_London2012.pdf
[17]   Milne E, Banwart S A, Noellemeyer E, Abson D J, Ballabio C, Bampa F, Bationo A, Batjes N H, Bernoux M, Bhattacharyya T, Black H, Buschiazzo D E, Cai Z, Cerri C E, Cheng K, Compagnone C, Conant R, Coutinho H L C, Brogniea D, Balieiro F C, et al. Soil carbon, multiple benefits. Environmental Development, 2015, 13: 33-38.
[18]   Clothier B E, Hall A J, Deurer M, Green S R, Mackay A D, Sauer T J, Norman J M, Sivakumar M V K. Soil ecosystem services//Sauer T J, Norman J M, Sivakumar M V K. Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics, 2011: 117-139.
[19]   Pan G X, Li L Q, Zheng J F, Cheng K, Zhang X H, Zheng J W, Li Z C. Managing soil organic carbon for multiple benefits case studies – positive exemplars. Benefits of SOM in agro-ecosystems: A case of China. Chapter 27//Banwart S. eds. Benefits of Soil Carbon, SCOPE Volume 71. CAB International, 2014: 383-401.
[20]   Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892.
[21]   Dymond J. Ecosystem Services in New Zealand. Lincoln, New Zealand: Manaaki Whenua Press, 2014.
[22]   Sandifer P A, Sutton-Grier A E, Ward B P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosystem Services, 2015, 12: 1-15.
[23]   Rutgers M, Van Wijnen H J, Schouten A J, Mulder C, Kuiten A M P, Brussaard L, Breure A M. A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of the Total Environment, 2012, 415: 39-48.
[24]   Fierer N, Leff J W, Adams B J, Nielsen U N, Bates S T, Lauber C L, Owens S, Gilbert J A, Wall D H, Caporaso J G, Affiliations A. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the USA, 2012, 109(52): 21390-21395.
[25]   European Commission. Final report summary-SOILSERVICE. Conflicting demands of land use, soil biodiversity and the sustainable delivery of ecosystem goods and services in Europe, 2013. URL: http://cordis.europa.eu/result/ rcn/56367_en.html
[26]   Finvers M A. Application of DPSIR for analysis of soil protection issues and an assessment of British Columbia’s soil protection legislation[D]. UK: Cranfield University, 2008.
[27]   FAO. World reference base for soil resources 2014. 2014. URL: http://www.fao.org/3/a-i3794e.pdf
[28]   Reid W V, Chen D, Goldfarb L, Hackmann H, Lee Y T, Mokhele K, Ostrom E, Raivio K, Rockstrom J, Schellnhuber H J, Whyte A. Earth system science for global sustainability: Grand challenges. Science, 2010, 12: 916-917.
[29]   De Groot RS, Alkemade R, Braat L, Hein L, Willemen L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 2010, 7(3): 260-272.
[30]   van Oudenhoven A P E, Petz K, Alkemade R, Hein L, de Groot R S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecological Indicators, 2012, 21: 110-122.
[31]   Goldstein J H, Caldarone G, Duarte T K, Ennaanay D, Hannahs N, Mendoza G, Polasky S, Wolny S, Daily G C. Integrating ecosystem- service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences of the USA, 2012, 109: 7565-7570.
[32]   Stockmann U, Adams M A, Crawford J W, Field D J, Henakaarchchi N, Jenkins M, Minasny B, McBratney A B, Courcelles V R, Singh K, Wheeler I, Abbott L, Angers D A, Baldock J, Bird M, Brookes P C, Chenu C, Jastrow J D, Lal R, Lehmann J, et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 2013, 164: 80-99.
[33]   IPCC. Summary for policymakers//Stocker T F, Qin D, Plattner G K, et al. eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
[34]   Cameron K C, Di H J, Moir J L. Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology, 2013, 162: 145-173.
[35]   Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
[36]   李保国, 黄峰. 1998-2007年中国农业用水分析. 水科学进展, 2010, 21(4): 575-583.
Li B G, Huang F. Trends in China’s agricultural water use during recent decade of 1998-2007 using the green and blue water approach. Advances in Water Science, 2010, 21(4): 575-583. (in Chinese)
[37]   Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K. The impacts of climate change on water resources and agriculture in China. Nature, 2011, 467: 43-51.
[38]   Wackernagel M, Rees W E, Testmale P. Our Ecological Footprint: Reducing Human Impact on the Earth (New Catalyst Bioregional Series).Gabriola Island: New Society Publishers, 1996.
[39]   徐中民, 程国栋, 张志强. 生态足迹方法的理论解析. 中国人口.资源与环境, 2006, 16(6): 69-78.
Xu Z M, Cheng G D, Zhang Z Q. A resolution to the conception of ecological footprint. China Population, Resources and Environment, 2006, 16(6): 69-78. (in Chinese)
[40]   Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S. Integrating ecological, carbon and water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecological Indicators, 2012, 16: 100-112.
[41]   Andrews M, Lea P J. Our nitrogen ‘footprint’: The need for increased crop nitrogen use efficiency. Annals of Applied Biology, 2013, 163: 165-169.
[42]   Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P. The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 2009, 7: 107-118.
[43]   Cheng K, Pan G, Smith P, Luo T, Li L L, Zheng J W, Zhang X H, Han X J, Yan M. Carbon footprint of China’s crop production: An estimation using agro-statistics data over 1993-2007. 2011, 142: 231-237.
[44]   Cheng K, Yan M, Nayak D, Pan G X, Smith P, Zheng J F, Zheng J W. Carbon footprint of crop production in China: An analysis of national statistics data. Journal of Agricultural Science, 2014. doi: 10.1017/ S0021859614000665.
[45]   Gan Y, Liang C, Chai Q, Lemke R L, Campbell C A, Zentner R P. Improving farming practices reduces the carbon footprint of spring wheat production. Nature Communication, 2014. doi: 10.1038/ ncomms6012.
[46]   Leip A, Weiss F, Lesschen J P, Westhoek H. The nitrogen footprint of food products in the European Union. The Journal of Agricultural Science, 2014, 152: 20-33.
[47]   Pierer M, Winiwarter W, Leach A M, Galloway J N. The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy, 2014, 49(Part 1): 128-136.
[48]   Chapagain A K, Hoekstra A Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics, 2011, 70: 749-758.
[49]   Xu Y, Huang K, Yu Y, Wang X. Changes in water footprint of crop production in Beijing from 1978 to 2012: a logarithmic mean Divisia index decomposition analysis. Journal of Cleaner Production, 2015, 87: 180-187.
[50]   Page G, Ridoutt B, Bellotti B. Carbon and water footprint tradeoffs in fresh tomato production. Journal of Cleaner Production, 2012, 32: 219-226.
[51]   ?u?ek L, Klemeš J J, Kravanja Z. A review of footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, 2012, 34: 9-20.
[52]   ?u?ek L, Klemeš J J, Kravanja Z. Carbon and nitrogen trade-offs in biomass energy production. Clean Technologies and Environmental Policy, 2012, 14: 389-397.
[53]   傅伯杰, 张立伟. 土地利用变化与生态系统服务:概念、方法与进展. 地理科学进展, 2014, 33(4): 441-446.
Fu B J, Zhang L W. Land-use change and ecosystem services: concepts, methods and progress. Progress in Geography, 2014, 33(4): 441-446. (in Chinese)
[54]   尹飞, 毛任钊, 傅伯杰, 刘国华. 农田生态系统服务功能及其形成机制. 应用生态学报, 2006, 17(5): 929-934.
Yin F, Mao R Z, Fu B J, Liu G H. Farm land ecosystem service and its formation mechanism. Chinese Journal Application Ecology, 2006, 17(5): 929-934. (in Chinese)
[55]   Macfadyen S, Gibson R, Polaszek A, Morris R J, Craze P G, Planqué R, Symondson W O C, Memmott J. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecology Letters, 2009, 12: 229-238.
[56]   Schipanski M E, Barbercheck M, Douglas M R, Finney D M, Haider K, Kaye J P, Kemanian A R, Mortensen D A, Ryan M R, Tooker J, White C. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems, 2014, 125: 12-22.
[57]   Watanabe M D B, Ortega E. Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change. Ecological Modelling, 2014, 271: 113-131.
[58]   Zhao G, Liu J, Kuang W, Ouyang Z, Xie Z. Disturbance impacts of land use change on biodiversity conservation priority areas across China: 1990-2010. Journal of Geographical Science, 2015, 25(5): 515-529.
[59]   李阳兵, 王世杰, 周德全. 茂兰岩溶森林的生态服务研究. 地球与环境, 2005, 33(2): 39-44.
Li Y B, Wang S J, Zhou D Q. Research on the ecosystem service evaluation of Maolan karst forest. Earth and Environment, 2005, 33(2): 39-44. (in Chinese)
[60]   Mancinelli R, Campiglia E, Caporali F, Di Felice V. Habitat patch diversity evaluation for sustainability: A case study of a rural area in Central Italy. Italian Journal of Agronomy, 2010, 4: 341-352.
[61]   Mancinelli R, Di Felice V, Radicetti E, Campiglia E. Impact of land ownership and altitude on biodiversity evaluated by indicators at the landscape level in Central Italy. Land Use Policy, 2015, 45: 43-51.
[62]   Christen B, Kjeldsen C, Dalgaard T, Martin-Ortega J. Can fuzzy cognitive mapping help in agricultural policy design and communication? Land Use Policy, 2015, 45: 64-75.
[63]   MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being. A Framework for Assessment. Washington, DC: Island Press, 2003.
[64]   De Groot R S, Alkemade R, Braat L, Hein L, Willemen L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 2010, 7(3): 260-272.
[65]   Dominati E, Patterson M, Mackay A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 2010, 69: 1858-1868.
[66]   Galic N, Schmolke A, Forbes V, Baveco H, van den Brink P. The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems. Science of the Total Environment, 2012, 415: 93-100.
[67]   Balbi S, del Prado A, Gallejones P, Geevan C P, Pardo G, Pérez-Miñana E, Manrique R, Hernandez-Santigao C, Villa F. Modeling trade-offs among ecosystem services in agricultural production systems. Environmental Modelling & Software, 2015, doi:10.1016/j.envsoft.2014.12.017.
[68]   Gervois S, Ciais P, de Noblet-Ducoudré N, Brisson N, Vuichard N, Viovy N. Carbon and water balance of European croplands throughout the 20th century. Global Biogeochemical Cycles, 2008. doi: 10.1029/ 2007GB003018.
[69]   Coleman K, Jenkinson D S. ROTHC-26.3. A Model for the Turnover of Carbon in Soil. Model Description and Windows Users Guide. Harpenden. 1999.
[70]   Parton W J, Hartman M D, Ojima D S, Schimel D S. DAYCENT: its land surface submodel: description and testing. Global and Planetary Change, 1998, 19: 35-48.
[71]   Del Grosso S J, Parton W J, Mosier A R, Hartman M D, Brenner J, Ojima D S, Schimel D S. Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model//Schaffer M, Ma L, Hansen S. Eds. Modeling Carbon and Nitrogen Dynamics for Soil Management. Boca Raton, Florida: CRC Press, 2001: 303-332.
[72]   Williams M, Malhi Y, Nobre A D, Rastetter E B, Grace J, Pereira M G P. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: A modelling analysis. Plant, Cell & Environment, 1998, 21(10): 953-968.
[73]   Bommarco R, Kleijn D, Potts S G. Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution, 2013, 28: 230-238.
[1] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[2] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
[3] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
[4] DongHua LI,YaWei FU,ChenXi ZHANG,YanFang CAO,WenTing LI,ZhuanJian LI,XiangTao KANG,GuiRong SUN. Genome-Wide Identification and Characterization of Transposable Elements in Xichuan Black-Bone Chicken [J]. Scientia Agricultura Sinica, 2020, 53(7): 1491-1500.
[5] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[6] ZHANG YuMeng,LI Jing,ZENG Li,YANG XiaoNan,LIU JingYa,ZHOU ZiXiang. Optimal Protected Area Selection: Based on Multiple Attribute Decision Making Method and Ecosystem Service Research ——Illustrated by Guanzhong-Tianshui Economic Region Section of the Weihe River Basin [J]. Scientia Agricultura Sinica, 2019, 52(12): 2114-2127.
[7] ZHOU Rong,LIU Pan,LI DongHua,ZHANG YanXin,WANG LinHai,ZHANG XiuRong,WEI Xin. Cloning and Functional Characterization of Sesame SiSAD Gene [J]. Scientia Agricultura Sinica, 2019, 52(10): 1678-1685.
[8] HUANG YuQian, YANG JinFeng, LIANG ChunHao, CHEN ShenPingYi, LIU XinYu, GENG KeRui, YAO YuChen, ZHANG Yu, HAN XiaoRi. Effects of Vanillic Acid on Seed Germination, Seedling Growth and Rhizosphere Microflora of Peanut [J]. Scientia Agricultura Sinica, 2018, 51(9): 1735-1745.
[9] WANG Juan, DENG Hong, LIU Yun, GUO YuRong, MENG YongHong. Enzymatic Reaction System and Structural Characterization of Phloridzin Oxidation Products POP2 [J]. Scientia Agricultura Sinica, 2018, 51(1): 182-190.
[10] YAN XiaoPing, ZHAO Dan, GUO Wei, WANG Wei, ZHANG YaKun, GAO YuJie, ZHAO KunLi. Cloning, Expression and Enzymatic Characterization of Chitin Deacetylases from Hyphantria cunea [J]. Scientia Agricultura Sinica, 2017, 50(5): 849-858.
[11] LI Ting, LI Jing, WANG YanZe, ZENG Li. The Spatial Flow and Pattern Optimization of Carbon Sequestration Ecosystem Service in Guanzhong-Tianshui Economical Region [J]. Scientia Agricultura Sinica, 2017, 50(20): 3953-3969.
[12] JIA Feng, GUO YuRong, YANG Xi, LIU Dong, LI Jie. Isolation and Purification of Polysaccharide from Fermented Apple Pomace and Its Relationship with Processing Characteristics [J]. Scientia Agricultura Sinica, 2017, 50(10): 1873-1884.
[13] JIN Yi-peng, LIU Qiao-rong, SUN Ming, QIAO Yan-chao, QIAO Ming-ming, LIU Bo-hua, LIN De-gui, CHEN Xi-zhao. Genomic Characterization of the Newly Emerged Canine Distemper Virus in Giant Panda [J]. Scientia Agricultura Sinica, 2015, 48(7): 1445-1452.
[14] PAN Gen-xing, CHENG Kun, LU Hai-fei, LI Lian-qing, LIU Xiao-yu, BIAN Rong-jun, ZHANG Xu-hui, ZHENG Ju-feng, ZHENG Jin-wei. Sustainable Soil Management: An Emerging Soil Science Challenge for Global Development [J]. Scientia Agricultura Sinica, 2015, 48(23): 4607-4620.
[15] WU Fan, ZHANG Xiao-man, ZHAO Lei, CUI Xu-hong, LI Hong-liang, LUO Chen. Binding Characterization of Chemosensory Protein CSP1 in the Bemisia tabaci Biotype Q with Plant Volatiles [J]. Scientia Agricultura Sinica, 2015, 48(10): 1955-1961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!