Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (4): 728-737.doi: 10.3864/j.issn.0578-1752.2018.04.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Heteroskedasticity Diagnosis and Feasible Generalized Least Squares Regression Modeling of Ternary Fertilizer Efficiency Model

KONG QingBo1, ZHANG MingQing1, LI Juan1, XU WenJiang2, ZHANG ZanDe3, YAO JianZu4   

  1. 1Institute of Soil and Fertilizer, Fujian Academy of Agricultural Science, Fuzhuo 350013; 2Fujian Institute of Subtropical Botany, Xiamen 361006, Fujian; 3Datian Soil and Fertilizer Technology Popularization Station, Datian 366100, Fujian; 4Yongchun Agro-Technical Extension Station, Yongchun 362200, Fujian
  • Received:2017-05-03 Online:2018-02-16 Published:2018-02-16

Abstract: 【Objective】 This paper presented the new strategy to develop fertilizer efficiency models, so as to improve the scientificity of fertilizer effect models and the success rate of the field experiment. 【Method】 According to the results from the 171 “3414” NPK field experiments with early rice, using the modern regression analysis theory, the reason of the ternary model heteroscedasticity and the statistical test methods were studied in the paper. Feasible generalized least squares (FGLS) was used to eliminate the heteroscedasticity effect. Result According to the professional characteristics of fertilizer efficiency models, the field experiment design and its management practices, soil fertility and its spatial heterogeneity were the key reasons for the models’ heteroscedasticity. Based on the White test, Park test and KB test, the heteroscedasticity of the 25.15% ternary fertilizer efficiency model showed the statistical significantly level. In view of the serious heteroscedastic of the field experimental data, FGLS regression model could convert part of field experimental results into significant level, whereas the Ordinary Least Square (OLS) could not; or the FGLS could convert the no-typical model into typical model; the probability of typical models increased from 27.68% to 34.99%. For the typical ternary model, the recommended fertilization rate of FGLS regression model roughly was equate to the rate of OLS model. Compared to the OLS modeling, the FGLS regression modeling could decrease the Mean Square Error (MSE) greatly, at the same time, which also could decease the variance from the parameters. Thus the FGLS regression model could improve the fitting precision and the predication ability. 【Conclusion】 FGLS is an effect way to eliminate or ease the heteroscedasticity from the ternary quadratic polynomial model, and can obviously improve the success rate of the field experimental data modeling.

Key words: early rice, N, P, K fertilizer, fertilizer efficiency model, heteroscedasticity, feasible generalized least squares

[1]    VALKAMA E, UUSITALO R, TURTOLA E. Yield response models to phosphorus application: a research synthesis of Finnish field trials to optimize fertilizer P use of cereals. Nutrient Cycling in Agroecosystems, 2011, 91(1): 1-15.
[2]    GRWGORT M C, ZORITA M D, DARDANELLI J, Bongiovanni R G. Regional model for nitrogen fertilization of site-specific rainfed corn in haplustolls of the central Pampas, Argentina. Precision Agriculture, 2011, 12(6): 831-849.
[3]    毛达如, 张承东. 推荐施肥技术中施肥模型与试验设计的研究. 土壤通报, 1991, 22(5): 216-218.
MAO D R , ZHANG C D. Fertilization model and the experiment design of fertilization recommendation technology. Chinese Journa1 of Soil Science, 1991, 22(5): 216-218. (in Chinese)
[4]    王兴仁. 二元二次肥料效应曲面等产线图在科学施肥中的位置(一). 土壤通报, 1985, 16(1): 30-34.
WANG X R. The positions of contour map of yield of binary quadratic fertilizer response curve in scientific fertilization (part 1). Chinese Journa1 of Soil Science, 1985, 16(1): 30-34. (in Chinese)
[5]    王兴仁. 二元二次肥料效应曲面等产线图在科学施肥中的位置(二). 土壤通报, 1985, 16(2): 86-88.
WANG X R. The positions of contour map of yield of binary quadratic fertilizer response curve in scientific fertilization (part 2). Chinese Journa1 of Soil Science, 1985, 16(2): 86-88. (in Chinese)
[6]    章明清, 林仁埙, 林代炎, 姜永. 极值判别分析在三元肥效模型推荐施肥中的作用. 福建农业学报, 1995, 10(2): 54-59.
ZHANG M Q, LIN R X, LIN D Y, JIANG Y. Function of distinguish analysis on extreme value in recommendatory fertilization for three-fertilizer efficiency model. Fujian Journal of Agricultural Sciences, 1995, 10(2): 54-59. (in Chinese)
[7]    CERRATO M E, BLACKMER A M. Comparison of models for describing corn yield response to nitrogen fertilizer. Agronomy Journal, 1990, 82(1): 138-143.
[8]    杨靖一, WADSWORTH G A, GREENWOOD D J. 三种蔬菜N肥效应曲线的比较研究. 植物营养与肥料学报, 1995, 1(1): 71-78.
YANG J Y, WADSWORTH G A, Greenwood D J. Comparative study on three kinds of vegetables response to N fertilizer curve. Plant Nutrition and Fertilizer Science, 1995, 1(1): 71-78. (in Chinese)
[9]    陈新平, 周金池, 王兴仁, 张福锁, 宝德俊. 小麦-玉米轮作制中氮肥效应模型的选择——经济和环境效益分析. 土壤学报, 2000, 37(3): 346-354.
CHEN X P, ZHOU J C, WANG X R, ZHANG F S, BAO D J. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system. Acta Pedologica Sinica, 2000, 37(3): 346-354. (in Chinese)
[10]   吴平, 陶勤南. 氮磷钾肥效模型的研究及其应用. 浙江农业大学学报, 1989, 15(4): 383-388.
WU P, TAO Q N. Study on N, P and K fertilizer response model and its application. Journal of Zhejiang Agricultural University, 1989, 15(4): 383-388. (in Chinese)
[11]   章明清. 米氏肥效方程的灰色建模法. 土壤通报, 1997, 28(1): 18-19.
ZHANG M Q. Gray modeling method of Mitsherlich fertilizer response equations. Chinese Journa1 of Soil Science, 1997, 28(1): 18-19. (in Chinese)
[12]   章明清, 徐志平, 姚宝全, 林琼, 颜明娟. Monte Carlo 法在多元肥效模型参数估计和推荐施肥中的应用. 植物营养与肥料学报, 2009, 15(2): 366-373.
ZHANG M Q, XU Z P, YAO B Q, LIN Q, YAN M J. Using Monte Carlo method for parameter estimation and fertilization recommendation of multivariate fertilizer response model. Plant Nutrition and Fertilizing Science, 2009, 15(2): 366-373. (in Chinese)
[13]   COLWELL J D. The erivation of fertilizer recommendations for crops in non-uniform environment. Crop Quality and Economy, 1974: 936-961.
[14]   王兴仁, 陈伦寿, 毛达如, 张才东. 分类回归综合法及其在区域施肥决策中的应用. 土壤通报, 1989, 20(1): 17-21.
WANG X R, CHEN L S, MAO D R, ZHANG C D. Classification of regression synthesis and its application for regional fertilization decision-making. Chinese Journa1 of Soil Science, 1989, 20(1): 17-21. (in Chinese)
[15]   毛达如, 张承东. 多点肥料效应函数的动态聚类方法. 北京农业大学学报, 1991, 17(2): 49-54.
MAO D R, ZHANG C D. Cluster analysis of quadratic response function on the fertilizer dispersed experiment. Acta Agriculturae Universitatis Pekinensis, 1991, 17(2): 49-54. (in Chinese)
[16]   MONTGOMERY D C, PECK E A, VINING G G. 线性回归分析导论. 第5版. 王辰勇, 译. 北京: 机械工业出版社, 2016: 91-268.
MONTGOMERY D C, PECK E A, VINING G G. Introduction to Linear Regression Analysis. 5th ed. WANG C Y, trans. Beijing: China Machine Press, 2016: 91-268. (in Chinese) 
[17]   李娟, 章明清, 孔庆波, 姚宝全, 颜明娟. 福建早稻测土配方施肥指标体系研究. 植物营养与肥料学报, 2010, 16(4): 938-946.
LI J, ZHANG M Q, KONG Q B, YAO B Q, YAN M J. Soil testing and formula fertilization index for early rice in Fujian Province. Plant Nutrition and Fertilizer Science, 2010, 16(4): 938- 946. (in Chinese)
[18]   鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 146-196.
LU R K. Soil Agricultural Chemical Analysis Method. Beijing: China's Agricultural Science and Technology Press, 2000: 146-196. (in Chinese)
[19]   GUJARATI D N, PORTER D C. 计量经济学基础 (上册). 第5版. 费剑平, 译. 北京: 中国人民大学出版社, 2011: 313-399.
GUJARATI D N, PORTER D C. Econometrics Foundation. 5th ed. FEI J P, trans. Beijing: China Renmin University Press, 2011: 313-399. (in Chinese)
[20]   尹光霞. 多元线性回归模型中的异方差性问题. 湖北大学学报(自然科学版), 2003, 25(2): 121-125. 
YIN G X. Problems on heteroscedasticity in multilinear regression models. Journal of Hubei University (Natural Science Edition), 2003, 25(2): 121-125. (in Chinese)
[21]   何晓群,刘文卿. 应用回归分析. 3版. 北京: 中国人民大学出版社, 2013: 158-170.
HE X Q, LIU W Q. Applied Regression Analysis. 3rd ed. Beijing: China Renmin University Press, 2013: 158-170. (in Chinese)
[22]   陈强. 高级计量经济学及Stata应用. 2版. 北京: 高等教育出版社, 2015: 87-99.
CHEN Q. Advanced Econometric and Stata Applications.2nd ed. Beijing: Higher Education Press, 2015: 87-99. (in Chinese)
[23]   章明清, 李娟, 孔庆波, 严芳. 作物肥料效应函数模型研究进展与展望. 土壤学报, 2016, 53(6): 1143-1156.
ZHANG M Q, LI J, KONG Q B, YAN F. Progress and prospect of the study on crop-response-to -fertilization function model. Acta Pedologica Sinica, 2016, 53(6): 1143-1156. (in Chinese)
[1] ZHU TieZhong,KE Jian,YAO Bo,CHEN TingTing,HE HaiBing,YOU CuiCui,ZHU DeQuan,WU LiQuan. Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1553-1564.
[2] CHEN HuiZhe,XU YiCheng,ZHANG YuPing,XIANG Jing,ZHANG YiKai,ZHU DeFeng. Effect of Pot-Mat Seedling on the Quality of Machined Transplanting and Yield Formation of Super Early Rice [J]. Scientia Agricultura Sinica, 2019, 52(23): 4240-4250.
[3] LIU Wei, LI YiJun, Lü HouQuan. Responses of Heading to Flowering to Maturity of Early Rice to Climate Change and Different Transplant Periods [J]. Scientia Agricultura Sinica, 2018, 51(1): 49-59.
[4] WANG Chun-yi, YAO Peng-juan, ZHANG Ji-quan, REN Yi-fang. Risk Assessment of Cold and Hot Damages for Double-Cropping Early Rice (DCER) in Lower-Middle Reaches of the Yangtze River Basin [J]. Scientia Agricultura Sinica, 2016, 49(13): 2469-2483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!