Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3319-3332.doi: 10.3864/j.issn.0578-1752.2020.16.010
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
LI Ying1,2(),LEI QiuLiang1(
),QIN LiHuan1,ZHU AXing3,4,LI XiaoHong1,ZHAI LiMei1,WANG HongYuan1,WU ShuXia1,YAN TieZhu1,LI WenChao1,HU WanLi5,REN TianZhi6,LIU HongBin1
[1] | 中华人民共和国生态环境部. 中国环境状况公报. 环保工作资料选, 2017: 17-31. |
Ministry of Ecology and Environment of the People's Republic of China. Bulletin on the state of China's environment. Environmental Performance Information, 2017: 17-31. (in Chinese) | |
[2] | 赵永宏, 邓祥征, 战金艳, 席北斗, 鲁奇. 我国湖泊富营养化防治与控制策略研究进展. 环境科学与技术, 2010,33(3):92-98. |
ZHAO Y H, DENG X Z, ZHAN J Y, XI B D, LU Q. Progress on preventing and controlling strategies of lake eutrophication in China. Environmental Science & Technology, 2010,33(3):92-98. (in Chinese) | |
[3] | HOWARTH R, CHAN F, CONLEY D J, GARNIER J, DONEY S C, MARINO R, BILLEN G. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology & the Environment, 2011,9(1):18-26. |
[4] |
ROY J W, BICKERTON G. Elevated dissolved phosphorus in riparian groundwater along gaining urban streams. Environmental Science & Technology, 2014,48(3):1492-1498.
pmid: 24422427 |
[5] | MORSE N B, WOLLHEIM W M. Climate variability masks the impacts of land use change on nutrient export in a suburbanizing watershed. Biogeochemistry, 2014,121(1):45-59. |
[6] | 陈亮, 董晓华, 李英海, 李中华, 刘冀, 薄会娟, 万浩, 蔡莉莉. 基于SWAT模型的黄柏河东支流域气候变化的水文响应研究. 三峡大学学报(自然科学版), 2019(2):1-5. |
CHEN L, DONG X H, LI Y H, LI Z H, LIU J, BO H J, WAN H, CAI L L. Hydrological response of climate change in east branch of Huangbaihe river based on SWAT model. Journal of China Three Gorges University(Natural Sciences), 2019(2):1-5. (in Chinese) | |
[7] | 娄永才, 郭青霞. 岔口小流域非点源污染模型AnnAGNPS不确定性分析. 农业环境科学学报, 2018,37(5):956-964. |
LOU Y C, GUO Q X. Uncertainty analysis of an AnnAGNPS model used in the Chakou watershed. Journal of Agro-Environment Science, 2018,37(5):956-964. (in Chinese) | |
[8] | 罗娜, 李华, 樊霆, 郭彬, 李凝玉, 傅庆林, 马洁, 金跃群. HSPF模型在流域面源污染模拟中的应用. 浙江农业科学, 2019(1):141-145. |
LUO N, LI H, FAN T, GUO B, LI N Y, FU Q L, MA J, JIN Y Q. Application of HSPF model in simulation of non-point source pollution. Journal of Zhejiang Agricultural Sciences, 2019(1):141-145. (in Chinese) | |
[9] | ZHANG X, HAO F, CHENG H, LI D. Application of swat model in the upstream watershed of the Luohe River. Chinese Geographical Science, 2003,13(4):334-339. |
[10] | 余红, 沈珍瑶. 非点源污染不确定性研究进展. 水资源保护, 2008,24(1):1-5. |
YU H, SHEN Z Y. Uncertainty of non-point source pollution. Water Resources Protection, 2008,24(1):1-5. (in Chinese) | |
[11] | 廖谦, 沈珍瑶. 农业非点源污染模拟不确定性研究进展. 生态学杂志, 2011,30(7):1542-1550. |
LIAO Q, SHEN Z Y. Uncertainties in agricultural non-point source pollution simulation: Research progress. Chinese Journal of Ecology, 2011,30(7):1542-1550. (in Chinese) | |
[12] |
LI W, ZHAI L, LEI Q, WOLLHEIM W M, LIU J, LIU H, HU W, REN T, WANG H, LIU S. Influences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in China. Science of the Total Environment, 2018,642:21-32.
doi: 10.1016/j.scitotenv.2018.06.048 pmid: 29894879 |
[13] | 崔超. 三峡库区香溪河流域氮磷入库负荷及迁移特征研究[D]. 北京: 中国农业科学院, 2016. |
CUI C. Characteristics of nitrogen and phosphorus loadings into receiving water body and migration in Xiangxi river basin, Three Gorges Reservoir region[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[14] | 李润奎, 朱阿兴, 陈腊娇, 刘军志, 宋现锋, 林耀明. SCS-CN模型中土壤参数的作用机制研究. 自然资源学报, 2013,28(10):1778-1787. |
LI R K, ZHU A X, CHEN L J, LIU J Z, SONG X F, LIN Y M. Effects of soil parameters in SCS-CN runoff model. Journal of Natural Resources, 2013,28(10):1778-1787. (in Chinese) | |
[15] | DIEK S, TEMME A J A M, TEULING A J. The effect of spatial soil variation on the hydrology of a semi-arid Rocky Mountains catchment. Geoderma, 2014,235-236(4):113-126. |
[16] | WORQLUL A W, AYANA E K, YEN H, JEONG J, MACALISTER C, TAYLOR R, GERIK T J, STEENHUIS T S. Evaluating hydrologic responses to soil characteristics using SWAT model in a paired- watersheds in the Upper Blue Nile Basin. Catena, 2018,163:332-341. |
[17] |
CHEN L, WANG G, ZHONG Y, SHEN Z. Evaluating the impacts of soil data on hydrological and nonpoint source pollution prediction. Science of the Total Environment, 2016,563-564:19-28.
doi: 10.1016/j.scitotenv.2009.10.027 pmid: 19896162 |
[18] | 叶许春, 张奇, 刘健, 李丽娇, 左海军. 土壤数据空间分辨率对水文过程模拟的影响. 地理科学进展, 2009,28(4):575-583. |
YE X C, ZHANG Q, LIU J, LI L J, ZUO H J. Effects of spatial resolution of soil data on hydrological processes. Modeling Progress in Geography, 2009,28(4):575-583. (in Chinese) | |
[19] | LI R K, RUI X P, ZHU A X, LIU J Z, Band L E, Song X F. Increasing detail of distributed runoff modeling using fuzzy logic in curve number. Environmental Earth Sciences, 2015,73(7):3197-3205. |
[20] |
李润奎, 朱阿兴, 李宝林, 裴韬, 秦承志. 流域水文模型对土壤数据响应的多尺度分析. 地理科学进展, 2011,30(1):80-86.
doi: 10.11820/dlkxjz.2011.01.010 |
LI R K, ZHU A X, LI B L, PEI T, QIN C Z. Response of simulated stream flow to soil data spatial detail across different routing areas. Progress in Geography, 2011,30(1):80-86. (in Chinese)
doi: 10.11820/dlkxjz.2011.01.010 |
|
[21] | KUMAR S, MERWADE V. Impact of watershed subdivision and soil data resolution on SWAT model calibration and parameter uncertainty. Jawra Journal of the American Water Resources Association, 2009,45(5):1179-1196. |
[22] |
MENGISTU G, MCCRAY J E. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management, 2008,88(3):393-406.
doi: 10.1016/j.jenvman.2007.03.016 pmid: 17475392 |
[23] | WANG X, MELESSE A M. Effects of STATSGO and SSURGO as inputs on SWAT Model's Snowmelt Simulation. Jawra Journal of the American Water Resources Association, 2006,42(5):1217-1236. |
[24] |
庞燕, 项颂, 储昭升, 薛力强, 叶碧碧. 洱海流域农业用地与入湖河流水质的关系研究. 环境科学, 2015,36(11):4005-4012.
doi: 10.1021/es0200903 |
PANG Y, XIANG S, CHU Z S, XUE L Q, YE B B. Relationship between agricultural land and water quality of inflow river in Erhai Lake basin. Environmental Science, 2015,36(11):4005-4012. (in Chinese)
doi: 10.1021/es0200903 |
|
[25] | 张辰, 陆建忠, 陈晓玲. 基于输出系数模型的云南洱海流域农业非点源污染研究. 华中师范大学学报(自然科学版), 2017,51(1):108-114. |
ZHANG C, LU J Z, CHEN X L. Study of pollution from agricultural non-point sources in Lake Erhai watershed in Yunnan Province based on export coefficient model. Journal of Central China Normal University (Natural Sciences), 2017,51(1):108-114. (in Chinese) | |
[26] | 张召喜. 基于SWAT模型的凤羽河流域农业面源污染特征研究[D]. 北京: 中国农业科学院, 2013. |
ZHANG Z X. Study on charateristics of agricultural non-point source pollution in Fengyu river basin on SWAT model[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) | |
[27] | 李文超. 凤羽河流域农业面源污染负荷估算及关键区识别研究[D]. 北京: 中国农业科学院, 2014. |
LI W C. Evaluating the loads of agricultural non-point source pollution and identifying critical source areas in Fengyu basin[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese) | |
[28] | 龙爱华. SWAT 2009理论基础. 郑州: 黄河水利出版社, 2012. |
LONG A H. Theoretical Documentation Version 2009 Soil&Water Assessment Tool. Zhengzhou: The Yellow River Water Conservancy Press, 2012. (in Chinese) | |
[29] | SHARIFI A, LANG M W, MCCARTY G W, SADEGHI A M, LEE S, YEN H, RABENHORST M C, JEONG J, YEO I Y. Improving model prediction reliability through enhanced representation of wetland soil processes and constrained model auto calibration - A paired watershed study. Journal of Hydrology, 2016,541:1088-1103. |
[30] |
MORIASI D N, ARNOLD J G, LIEW M W V, BINGNER R L, HARMEL R D, VEITH T L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 2007,50(3):885-900.
doi: 10.13031/2013.23153 |
[31] |
GOWDA P H, MULLA D J, NANGIA V, ALE S. Scale effects of STATSGO and SSURGO on flow and water quality predictions. Journal of Water Resource and Protection, 2013,5(3):266-274.
doi: 10.4236/jwarp.2013.53027 |
[32] |
CHAPLOT V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3--N loads predictions. Journal of Hydrology, 2005,312(1/4):207-222.
doi: 10.1016/j.jhydrol.2005.02.017 |
[33] | BARONI G, ZINK M, KUMAR R, SAMANIEGO L, ATTINGER S. Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales. Hydrology & Earth System Sciences, 2017,21(5):1-37. |
[34] |
LI R, ZHU A, SONG X, LI B, PEI T, QIN C. Effects of Spatial Aggregation of Soil Spatial Information on Watershed Hydrological Modeling. Hydrological Processes, 2012,26:1390-1404.
doi: 10.1002/hyp.v26.9 |
[35] | 李润奎, 朱阿兴, 秦承志, 陈腊娇, 刘军志. 土壤数据对分布式流域水文模型模拟效果的影响. 水科学进展, 2011,22(2):168-174. |
LI R K, ZHU A X, QIN C Z, CHEN L J, LIU J Z. Effects of spatial detail of soil data on distributed hydrological modeling. Advances in Water Science, 2011,22(2):168-174. (in Chinese) | |
[36] |
朱阿兴, 杨琳, 樊乃卿, 曾灿英, 张甘霖. 数字土壤制图研究综述与展望. 地理科学进展, 2018,37(1):66-78.
doi: 10.18306/dlkxjz.2018.01.008 |
ZHU A X, YANG L, FAN N Q, ZENG C Y, ZHANG G L. The review and outlook of digital soil mapping. Progress in Geography, 2018,37(1):66-78. (in Chinese)
doi: 10.18306/dlkxjz.2018.01.008 |
|
[37] | BOSSA A Y, DIEKKRUGER B, IGUE A M, GAISER T. Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma, 2012, 173-174(2):61-74. |
[38] | 李润奎, 朱阿兴, Peter C. Augello, James E. Burt. SWAT模型对高精度土壤信息的敏感性研究. 地球信息科学学报, 2007,9(3):72-78. |
LI R K, ZHU A X, PETER C A, JAMES E B. Sensitivity of SWAT model to detailed soil information. Geo-Information Science, 2007,9(3):72-78. (in Chinese) | |
[39] |
WAHREN F T, JULICH S, NUNES J P, GONZALEZ P O, HAWTREE D, FEGER K H, KEIZER J J. Combining digital soil mapping and hydrological modeling in a data scarce watershed in north-central Portugal. Geoderma, 2016,264:350-362.
doi: 10.1016/j.geoderma.2015.08.023 |
[40] | ZIADAT F M, DHANESH Y, SHOEMATE D, SRINIVASAN R, NARASIMHAN B, TECH J. Soil-Landscape Estimation and Evaluation Program (SLEEP) to predict spatial distribution of soil attributes for environmental modeling. International Journal of Agricultural & Biological Engineering, 2015,8(3):1-15. |
[1] | YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410. |
[2] | MA YaMei,ZHANG ShaoHong,ZHAO JunLiang,LIU Bin. Function of FCS-Like Zinc-Finger Protein OsFLZ18 in Regulating Rice Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(20): 3875-3884. |
[3] | LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. |
[4] | HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051. |
[5] | ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092. |
[6] | MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25. |
[7] | YANG Min,XU HuaWei,WANG CuiLing,YANG Hu,WEI YueRong. Using CRISPR/Cas9-mediated Targeted Mutagenesis of ZmFKF1 Delayed Flowering Time in Maize [J]. Scientia Agricultura Sinica, 2021, 54(4): 696-707. |
[8] | YE Di,SHI Jiang,GAO ShuangCheng,WANG ZhanYing,SHI GuoAn. Correlation Analysis of Auxin Involved in the Process of Petal Abscission of Tree Peony Luoyanghong Cut Flowers by Ethylene Promoting [J]. Scientia Agricultura Sinica, 2021, 54(23): 5097-5109. |
[9] | ZHANG Qiao,WANG Ke. The Uncertainty of Agricultural Yield Risk Assessment and Agricultural Insurance Pricing: Literature Review and Wayforward [J]. Scientia Agricultura Sinica, 2021, 54(22): 4778-4786. |
[10] | WANG GuoLi,CHANG FangDi,ZHANG HongYuan,LU Chuang,SONG JiaShen,WANG Jing,PANG HuanCheng,LI YuYi. Effects of Straw Interlayer with Different Thickness on Saline-Alkali Soil Temperature, Water Content, and Sunflower Yield in Hetao Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(19): 4155-4168. |
[11] | MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249. |
[12] | JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368. |
[13] | DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758. |
[14] | DENG LiJuan,JIAO XiaoQiang. A Meta-Analysis of Effects of Nitrogen Management on Winter Wheat Yield and Quality [J]. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365. |
[15] | LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163. |
|