Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3279-3290.doi: 10.3864/j.issn.0578-1752.2019.19.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Plant Type Characteristics and Evolution of Main Economic Characters in Early Maturing Upland Cotton Cultivar Replacement in Xinjiang

CHEN MinZhi,YANG YanLong,WANG YuXuan,TIAN JingShan,XU ShouZhen,LIU NingNing,DANG Ke,ZHANG WangFeng()   

  1. College of Agriculture, Shihezi University/The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
  • Received:2019-04-09 Accepted:2019-06-28 Online:2019-10-01 Published:2019-10-11
  • Contact: WangFeng ZHANG E-mail:zhwf_agr@shzu.edu.cn

Abstract:

【Objective】 This paper analyzed the evolution trend of plant type characteristics and main economic traits in the process of improving the yield of early-maturing upland cotton (Gossypium hirsutum L.) in Xinjiang, combined with the demand for the characteristics of cultivars in the development of machine-harvested cotton, and explained the changes of suitable machine-harvesting characteristics in cultivar replacement. It provides a theoretical basis for the breeding and cultivation management of new cotton varieties in Xinjiang. 【Method】 Large-scale main cultivars (Xinluzao 1, Xinluzao 7, Xinluzao 13, and Xinluzao 45) were used as experimental materials under mulched drip irrigation condition. A total of eleven plant type characters and the evolution of major economic traits were analyzed, including the eleven plant type characters of the length of the first fruit node, inter-node length of fruit branch, ratio of fruit node/fruit branch, plant height, node of first fruit branch, height of first fruit branch, the angle between fruit branch and main stem, the number of fruit branches, the number of vegetative branches, width of the fourth leaf from the top, and stem diameter. 【Result】 With the cotton cultivar replacing, the length of the first fruit node, inter-node length of fruit branch, and the ratio of fruit node/fruit branch increased gradually. The plant type changed from compact to loose. Plant height, node of first fruit branch, and height of first fruit branch increased gradually. The angle between fruit branch and main stem of upper-canopy was gradually reduced, and the fruit branch was lifted, which has high plant-type characteristics. According to the requirements of cotton machine harvesting characteristics. It shows that 2010s cultivars had plant type characters with high yield. The length of the first fruit node and the angle between fruit branch and main stem of 2010s cultivars was more in line with the requirements of machine-harvested cotton. There was no significant differences in number of fruit branches, number of vegetative branches, width of the fourth leaf from the top, and stem diameter among cultivars of different ages. The lint yield, total boll number, and lint percentage increased gradually with the cotton cultivar replacing. The lint yield of the 1980s, 1990s, 2000s, and 2010s was 23%-53%, 16%-20%, 13%-14%, and -2%-6% higher than the yield of regional experiment year. The modern high-yield cultivation techniques under mulched drip irrigation plays an important role on yield improvement. However, the harvest index of 2000s and 2010s cultivars were significantly lower than the 1990s cultivars. Compared with the 1980s and 1990s cultivars, the upper boll period of the 2010s cultivars was reduced 4-5 days, the boll opening were relatively concentrate, sensitive to defoliant. There was no significant difference in boll opening rate, and they were greater than 95%. But the growth period was longer. Compared with the growth period of the trial cultivars, the 1980s and 1990s cultivars were advanced by 3-7 days, and the 2000s and 2010s cultivars were advanced by 0-3 days. This may be related to the application of the technique of precocious cultivation under mulched drip irrigation. The fiber length, fiber strength, elongation, and fiber spinning consistency index of 2000s and 2010s cultivars improved obviously. But the Micronaire was relatively large. The improvement of fiber strength was at the expense of fiber fineness, and the fiber quality coordination was not good. 【Conclusion】 During the process of increasing yield of cotton cultivar replacement, economic characteristics of cotton improved, but the increasing yield of plant type changed from compact to loose, with long growth period, low harvest index, and large Micronaire. With the application of the machine-harvesting mode, the breeding and selection of cultivars with excellent fiber quality and suitable machine-harvesting are the key to ensuring the steady development of the cotton industry Xinjiang.

Key words: early-maturing cotton, cultivar renew, plant type characters, fiber quality, machine-harvest

Table 1

Cotton breeding eras quantum formation and main cultivated eras"

品种年代
Decade
品种名称
Cultivar
区域试验产量
Yield of regional experiment (kg·hm-2)
生育期
Days to maturity
(d)
审定时间
Year of release
品种大面积应用时间
Year of main use of cultivar
推广面积
Cultivated area
(hm2)
1980s 新陆早1号 Xinluzao 1 1233 124 1978 1983—1994 >30×104 in 1991
1990s 新陆早7号 Xinluzao 7 1563 125 1997 1995—2002 >21×104 in 2000
2000s 新陆早13号 Xinluzao 13 1925 121 2002 2003—2007 >20×104 in 2004
2010s 新陆早45号 Xinluzao 45 2295 128 2010 2011—2015 >53×104 in 2012-2014

Fig. 1

Daily maximum temperature (filled circles), daily minimum temperature (open circles), and precipitation (bars) at the study site in 2015-2016, and 2018"

Table 2

Record form of cotton growth and development stage in 2015, 2016, and 2018"

年份
Year
品种
Cultivar
出苗期
Seeding stage (M/D)
现蕾期
Squaring stage (M/D)
开花期
Flowering stage (M/D)
盛铃期
Full bolling stage (M/D)
吐絮期
Boll opening stage (M/D)
苗期Seedling period (d) 蕾期
Bud period (d)
花铃期 Flower boll period (d) 生育期
Days to maturity (d)
2015 新陆早1号 Xinluzao 1 4/25 6/1 6/27 7/10 8/23 37 26 57 120
新陆早7号 Xinluzao 7 4/26 5/31 6/25 7/8 8/20 35 25 56 116
新陆早13号 Xinluzao 13 4/26 6/2 6/27 7/10 8/21 37 25 55 117
新陆早45号 Xinluzao 45 4/25 6/2 6/29 7/12 8/27 38 27 59 124
2016 新陆早1号 Xinluzao 1 4/27 6/6 6/28 7/13 8/27 40 22 60 122
新陆早7号 Xinluzao 7 4/27 6/6 6/25 7/10 8/21 40 19 57 116
新陆早13号 Xinluzao 13 4/27 6/9 6/30 7/17 8/26 43 21 57 121
新陆早45号 Xinluzao 45 4/26 6/9 6/30 7/17 8/30 44 21 61 126
2018 新陆早1号 Xinluzao 1 4/29 6/10 6/29 - 8/30 41 19 62 122
新陆早7号 Xinluzao 7 4/30 6/10 6/28 - 8/31 40 18 64 122
新陆早13号 Xinluzao 13 4/30 6/10 6/28 - 9/2 40 18 66 124
新陆早45号 Xinluzao 45 4/29 6/11 6/30 - 9/2 42 19 64 125

Table 3

Summary of the P-values for plant type characters of cotton cultivar from different eras in 2015, 2016, and 2018"

指标Variable 2015 2016 2018
株高Plant height ** ** **
始节高度Height of first fruit branch ** ** **
果枝始节位Node of first fruit branch ** ** ns
第一果节长度Length of the first fruit node * ** ns
果枝节间长度Inter-node length of fruit branch ** ** **
果枝角度Angle between fruit branch with main stem * - *
节枝比Ratio of fruit node/fruit branch * * *
倒四叶宽Width of the fourth leaf from the top ns ns -
果枝数Number of fruit branches ** ns ns
叶枝数Number of vegetative branches ns * ns
茎粗Stem diameter - - ns

Fig. 2

The changes of pant height at each growth stage by cotton cultivars in 2015, 2016 and 2018 (n=3, mean ± SD) Values followed by different letters are significantly different at 0.05 level in the same year. The same as below"

Fig. 3

The changes of plant type characters of cotton cultivars from different eras in 2015, 2016, and 2018(n=3, mean ± SD)"

Fig. 4

Defoliation rate, boll opening rate, and period of boll of cotton cultivars from different eras in 2015 and 2016 (n=3, mean ± SD)"

Table 4

Yield, yield components, and harvest index of cotton cultivars from different breeding eras in 2015, 2016 and 2018"

年份
Year
品种
Cultivar
总铃数
Boll number
(×104/hm2)
单铃重
Boll weight
(g)
衣分
Lint percentage
(%)
皮棉产量
Lint yield
(kg·hm-2)
收获指数
Harvest index
2015 新陆早1号Xinluzao 1 88.6±1.4c 5.42±0.03ab 39.4±0.6b 1892±59c 0.42±0.02c
新陆早7号Xinluzao 7 81.0±1.4d 5.62±0.22a 41.5±0.5a 1882±56c 0.55±0.01a
新陆早13号Xinluzao 13 102.6±1.4b 5.12±0.10b 42.0±0.8a 2204±74b 0.46±0.01b
新陆早45号Xinluzao 45 106.4±3.1a 5.34±0.24ab 42.5±0.7a 2436±86a 0.44±0.02bc
P ** * ** ** **
2016 新陆早1号Xinluzao 1 80.9±1.3b 5.32±0.09b 36.6±1.1c 1518±34c 0.32±0.00b
新陆早7号Xinluzao 7 97.6±2.5a 4.83±0.11c 39.1±0.0b 1807±41b 0.41±0.00a
新陆早13号Xinluzao 13 104.1±4.8a 5.56±0.11a 41.6±0.2a 2174±48a 0.29±0.02c
新陆早45号Xinluzao 45 98.9±4.2a 5.70±0.11a 42.0±1.0a 2255±83a 0.30±0.01bc
P ** ** ** ** **
2018 新陆早1号Xinluzao 1 94.1±4.6b 4.66±0.22c 36.0±0.8c 1580±78d 0.27±0.01b
新陆早7号Xinluzao 7 96.9±5.3b 5.35±0.29b 37.4±0.4b 1938±106c 0.33±0.04a
新陆早13号Xinluzao 13 113.7±13.1a 5.27±0.22b 40.0±0.7a 2398±275ab 0.27±0.02b
新陆早45号Xinluzao 45 113.5±11.5a 5.54±0.21a 39.7±0.5a 2498±253a 0.31±0.02a
P ** ** ** ** *

Table 5

Fiber quality of cotton cultivars from different breeding eras in 2015, 2016 and 2018"

年份
Year
品种
Cultivar
纤维长度
Fiber length (mm)
比强度
Fiber strength (cN·tex-1)
马克隆值
Micronaire
纤维整齐度
Fiber uniformity (%)
伸长率
Elongation
纺纱一致性指数
Fiber spinning consistency index
2015 新陆早1号 Xinluzao 1 28.4±0.6b 28.5±0.3b 3.93±0.27c 85.4±0.8a 7.30±0.26a 135.7±6.0ab
新陆早7号 Xinluzao 7 28.7±0.5ab 24.4±0.4c 4.31±0.26b 83.8±0.8a 6.07±0.46b 121.0±2.6b
新陆早13号 Xinluzao 13 29.6±0.4a 31.7±2.0a 4.65±0.06ab 85.4±0.7a 7.73±0.32a 145.0±7.8a
新陆早45号 Xinluzao 45 29.2±0.5ab 30.9±0.1a 4.76±0.11a 83.2±2.3a 7.90±0.62a 136.7±17.7ab
P ns ** ** ns ** ns
2016 新陆早1号 Xinluzao 1 30.1±0.5ab 27.2±1.7b 3.77±0.31a 85.7±0.7ab 8.00±0.10b 149.3±3.1bc
新陆早7号 Xinluzao 7 29.2±0.2b 27.9±0.7b 3.90±0.53a 84.0±1.9b 7.67±0.76b 139.0±7.9c
新陆早13号 Xinluzao 13 28.9±1.1b 30.8±0.5a 4.03±0.23a 85.4±1.1ab 9.23±0.67a 153.3±3.2ab
新陆早45号 Xinluzao 45 31.1±0.4a 31.4±0.8a 4.20±0.20a 86.7±1.5a 9.63±0.15a 164.0±7.8a
P * ** ns ns ** **
2018 新陆早1号 Xinluzao 1 28.8±0.1c 31.7±1.5ab 4.07±0.18b 83.4±1.0a 6.76±0.02d -
新陆早7号 Xinluzao 7 29.6±0.6b 29.7±1.1b 4.16±0.30b 84.4±0.0a 6.80±0.00c -
新陆早13号 Xinluzao 13 29.7±0.5ab 32.1±0.4a 4.69±0.08a 84.4±0.2a 6.84±0.02b -
新陆早45号 Xinluzao 45 30.5±0.1a 32.7±1.2a 4.09±0.07b 84.1±0.5a 6.88±0.02a -
P ** ns ** ns ** -
[1] 姚源松 . 新疆棉花区划新论. 中国棉花, 2001,28(2):2-5.
YAO Y S . New discussion on cotton-planting areas division in Xinjiang. China Cotton, 2001,28(2):2-5. (in Chinese)
[2] 张德贵, 孔繁玲, 张群远, 刘文欣, 杨付新, 许乃银, 廖琴, 邹奎 . 建国以来我国长江流域棉区棉花品种的遗传改良: Ⅰ. 产量及产量组分性状的改良. 作物学报, 2003,29(2):208-215.
ZHANG D G, KONG F L, ZHANG Q Y, LIU W X, YANG F X, XU N Y, LIAO Q, ZOU K . Genetic improvement of cotton varieties in the Yangtze valley in China since 1950s: I. Improvement on yield and yield components. Acta Agronomica Sinica, 2003,29(2):208-215. (in Chinese)
[3] 孔繁玲, 姜保功, 张群远, 杨付新, 李如忠, 刘永平, 赵素兰, 郭腾龙 . 建国以来我国黄淮棉区棉花品种的遗传改良: Ⅰ. 产量及产量组分的改良. 作物学报, 2000,26(2):148-156.
KONG F L, JIANG B G, ZHANG Q Y, YANG F X, LI R Z, LIU Y P, ZHAO S L, GUO T L . Genetic improvements of cotton varieties in Huang-Huai region in China since 1950s: I. Improvements on yield and yield components. Acta Agronomica Sinica, 2000,26(2):148-156. (in Chinese)
[4] 喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友 . 中国棉花高产育种研究进展. 中国农业科学, 2016,49(18):3465-3476.
doi: 10.3864/j.issn.0578-1752.2016.18.001
YU S X, FAN S L, WANG H T, WEI H L, PANG C Y . Progresses in research on cotton high yield breeding in China. Scientia Agricultura Sinica, 2016,49(18):3465-3476. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.18.001
[5] 李雪源, 郑巨云, 王俊铎, 吐尔逊江, 艾先涛, 莫明, 多力坤 . 中国棉业科技进步30年——新疆篇. 中国棉花, 2009,36(S1):24-29.
LI X Y, ZHENG J Y, WANG J D, TURSUNJIAN, AI X T, MO M, DUO L K . Thirty years of science and technology progress in China's cotton industry-Xinjiang. China Cotton, 2009,36(S1):24-29. (in Chinese)
[6] 刁明, 褚贵新, 李少昆, 曹连莆 . 北疆50年来主栽棉花品种亲缘关系的研究. 中国农业科学, 2002,35(12):1456-1460.
DIAO M, CHU G X, LI S K, CAO L P . Studies on the relationship of upland cotton varieties in the course of replacement of varieties in north Xinjiang over the past fifty years. Scientia Agricultura Sinica, 2002,35(12):1456-1460. (in Chinese)
[7] 吐尔逊江, 李雪源, 田长彦, 王俊铎, 买买提, 艾先涛 . 南疆棉区棉花品种的特性演变与育种潜力研究. 植物遗传资源学报, 2012,13(4):535-541.
TURSUNJAN, LI X Y, TIAN C Y, WANG J D, MAIMAITI, AI X T . Cultivar evolution and breeding potential of cotton in region of southern Xinjiang. Journal of Plant Genetic Resources, 2012,13(4):535-541. (in Chinese)
[8] 田海燕, 薛飞, 李艳军, 孙杰 . 北疆棉花品种主要经济性状演替规律研究. 西北农业学报, 2007,16(5):96-99.
TIAN H Y, XUE F, LI Y J, SUN J . Research on main economical characteristics succession of cotton variety in northern of Xinjiang. Acta Agriculturae Boreali-occidentalis Sinica, 2007,16(5):96-99. (in Chinese)
[9] 喻树迅, 范术丽 . 我国棉花遗传育种进展与展望. 棉花学报, 2003,15(2):120-124.
YU S X, FAN S L . The evolutions and prospect of cotton genetics and breeding in China. Cotton Science, 2003,15(2):120-124. (in Chinese)
[10] 毛树春, 李亚兵, 王占彪, 雷亚平, 黄群, 王文魁, 杨北方, 冯璐, 李鹏程 . 农业高质量发展背景下中国棉花产业的转型升级. 农业展望, 2018,14(5):39-45.
MAO S C, LI Y B, WANG Z B, LEI Y P, HUANG Q, WANG W K, YANG B F, FENG L, LI P C . Transformation and upgrading of China's cotton industry under the background of agricultural high-quality development. Agriculture Prospect, 2018,14(5):39-45. (in Chinese)
[11] 王志坚, 徐红 . 新疆机采棉的调研与发展建议. 中国棉花, 2011,38(6):10-13.
doi: 1000-632X(2011)06-0010-04
WANG Z J, XU H . Survey and development proposal of machine-picked cotton in Xinjiang. China Cotton, 2011,38(6):10-13. (in Chinese)
doi: 1000-632X(2011)06-0010-04
[12] 张杰, 刘林 . 新疆兵团机采棉与手采棉经济效益比较研究. 农业现代化研究, 2013,34(3):372-375.
ZHANG J, LIU L . A comparison research of economic performance between machine-picking and hand-picking cotton in XPCC. Research of Agricultural Modernization, 2013,34(3):372-375. (in Chinese)
[13] 努斯热提·吾斯曼, 喻树迅, 范术丽, 梅拥军, 原日红 . 陆地棉机采性状对皮棉产量的遗传贡献分析. 棉花学报, 2012,24(1):10-17.
doi: 1002-7807(2012)01-0010-08
NUSIRAT·OSMAN, YU S X, FAN S L, MEI Y J, YUAN R H . Analysis of genetic contribution of mechanical harvesting traits to lint yield in upland cotton. Cotton Science, 2012,24(1):10-17. (in Chinese)
doi: 1002-7807(2012)01-0010-08
[14] 王娟, 董承光, 孔宪辉, 刘丽, 王旭文, 余渝 . 新疆生产建设兵团机采棉育种研究现状及展望. 中国棉花, 2013,40(4):7-8.
doi: 1000-632X(2013)04-0007-2
WANG J, DONG C G, KONG X H, LIU L, WANG X W, YU Y . Progresses and problems of mechanical harvest upland cotton breeding in Xinjiang production and construction corps. China Cotton, 2013,40(4):7-8. (in Chinese)
doi: 1000-632X(2013)04-0007-2
[15] 董合忠, 张艳军, 张冬梅, 代建龙, 张旺锋 . 基于集中收获的新型棉花群体结构. 中国农业科学, 2018,51(24):4615-4624.
doi: 10.3864/j.issn.0578-1752.2018.24.003
DONG H Z, ZHANG Y J, ZHANG D M, DAI J L, ZHANG W F . New grouped harvesting-based population structures of cotton. Scientia Agricultura Sinica, 2018,51(24):4615-4624. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.24.003
[16] 李雪源 . 新疆棉花生产中的几个热门项目. 中国棉花, 1996,23(9):38.
LI X Y . Several popular items in cotton production in Xinjiang. China Cotton, 1996,23(9):38. (in Chinese)
[17] 卢秀茹, 贾肖月, 牛佳慧 . 中国棉花产业发展现状及展望. 中国农业科学, 2018,51(1):26-36.
doi: 10.3864/j.issn.0578-1752.2018.01.003
LU X R, JIA X Y, NIU J H . The present situation and prospects of cotton industry development in China. Scientia Agricultura Sinica, 2018,51(1):26-36. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.01.003
[18] 白岩, 毛树春, 田立文, 李莉, 董合忠 . 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017,50(1):38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004
BAI Y, MAO S C, TIAN L W, LI L, DONG H Z . Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017,50(1):38-50. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.004
[19] 欧阳本廉, 黄顶元 . 特早熟陆地棉新品种新陆早7号. 中国棉花, 1998,25(5):25.
OUYANG B Y, HUANG D Y . New cultivar of special early-maturing upland cotton-Xinluzao 7. China Cotton, 1998,25(5):25. (in Chinese)
[20] 李家胜, 毕双杰, 赵富强, 李国萍, 孔祥伟, 黄丽叶, 万慧 . 早熟抗病棉花新品种——新陆早13号. 中国棉花, 2002,29(6):20.
LI J S, BI S J, ZHAO F Q, LI G P, KONG X W, HUANG L Y, WAN H . New cultivar of cotton with early-maturing and disease resistance-Xinluzao 13. China Cotton, 2002,29(6):20. (in Chinese)
[21] 宁新柱, 邓福军, 林海, 李吉莲, 刘萍, 宿俊吉 . 早熟陆地棉新品种——新陆早45号. 中国棉花, 2011,38(1):27.
NING X Z, DENG F J, LIN H, LI J L, LIU P, SU J J . Early maturing upland cotton variety-Xinluzao 45. China Cotton, 2011,38(1):27. (in Chinese)
[22] 郭江平, 曾丽萍 . 新疆新陆早系列品种系谱分析与育种方向. 植物遗传资源学报, 2005,6(3):335-338.
GUO J P, ZENG L P . Analysis on line family of the early maturing upland cotton varieties of Xinjiang and the discussion of breeding direction. Journal of Plant Genetic Resources, 2005,6(3):335-338. (in Chinese)
[23] 孙杰, 赖先齐, 刘干, 易红霞 . 新疆特早熟棉区棉花品种现状及对策分析. 石河子大学学报(自然科学版), 1997,1(3):186-189.
SUN J, LAI X Q, LIU G, YI H X . Analysis on current situation and countermeasures of cotton varieties in Xinjiang special early-maturing cotton region. Journal of Shihezi University (Natural Science), 1997,1(3):186-189. (in Chinese)
[24] 中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013: 431-432, 623-644.
Cotton Research Institute , Chinese Academy of Agricultural Sciences. Cotton Farming in China. Shanghai: Shanghai Scientific and Technical Press, 2013: 431-432, 623-644. (in Chinese)
[25] 纪从亮, 俞敬忠, 刘友良, 吴云康 . 棉花高产品种的株型特征研究. 棉花学报, 2000,12(5):234-237.
JI C L, YU J Z, LIU Y L, WU Y K . Study on the plant type characteristics of high-yielding cotton varieties. Cotton Science, 2000,12(5):234-237. (in Chinese)
[26] YANG Y L, CHEN M Z, TIAN J S, XIAO F, XU S Z, ZUO W Q, ZHANG W F . Improved photosynthetic capacity during the mid- and late reproductive stages contributed to increased cotton yield across four breeding eras in Xinjiang, China, Field Crops Research, 2019,240:177-184.
[27] 刁明, 褚贵新 . 北疆50年来棉花主栽品种库特性演替规律的研究. 石河子大学学报(自然科学版), 2001,5(3):182-185.
DIAO M, CHU G X . Studies on the evolutionary changes in characters of sink of upland cotton varieties in the course of replacement of varieties in north Xinjiang over the past fifty years. Journal of Shihezi University (Natural Science), 2001,5(3):182-185. (in Chinese)
[28] YUE Y S, ZHANG M C, ZHANG J C, TIAN X L, DUAN L S, LI Z H . Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. Journal of Experimental Botany, 2012,63(10):3741-3748.
[29] LUO H H, ZHANG H L, ZHANG Y L, ZHANG W F . Evolution characteristics related to photosynthesis, growth and yield in some old and new cotton cultivars. Photosynthetica, 2017,55(2):301-307.
[30] 许乃银, 李健 . 我国主产棉区棉花纤维品质性状的区域分布特征. 中国生态农业学报, 2016,24(11):1547-1554.
XU N Y, LI J . Regional distribution characteristics of cotton fiber quality in main cotton production areas in China. Chinese Journal of Eco-Agriculture, 2016,24(11):1547-1554. (in Chinese)
[31] 熊宗伟, 顾生浩, 毛丽丽, 王雪姣, 张立祯, 周治国 . 中国棉花纤维品质和气候因子的空间分布特征. 应用生态学报, 2012,23(12):3385-3392.
XIONG Z W, GU S H, MAO L L, WANG X J, ZHANG L Z, ZHOU Z G . Spatial distribution characteristics of China cotton fiber quality and climatic factors based on GIS. Chinese Journal of Applied Ecology, 2012,23(12):3385-3392. (in Chinese)
[32] 田景山, 张煦怡, 张旺锋 . 新疆近年机采棉发展过程中的棉纤维品质变化. 中国棉花, 2017,44(12):27-31.
TIAN J S, ZHANG X Y, ZHANG W F . Chang of fiber quality along with the development of machine-harvested cotton in Xinjiang. China Cotton, 2017,44(12):27-31. (in Chinese)
[33] TIAN J S, ZHANG X Y, YANG Y L, YANG C X, XU S Z, ZUO W Q, ZHANG W F, DONG H Y, JIU X L, YU Y C, ZHAO Z . How to reduce cotton fiber damage in the Xinjiang China. Industrial Crops and Products, 2017,109:803-811.
[34] TIAN J S, ZHANG X Y, ZHANG W F, DONG H Y, JIU X L, YU Y C, ZHAO Z . Leaf adhesiveness affects damage to fiber strength during seed cotton cleaning of machine-harvested Cotton. Industrial Crops and Products, 2017,107:211-216.
[35] 田景山, 王文敏, 王聪, 牛玉萍, 罗宏海, 勾玲, 张亚黎, 张旺锋 . 机械采收方式对新疆棉品质的影响. 纺织学报, 2016,37(7):13-17.
TIAN J S, WANG W M, WANG C, NIU Y P, LUO H H, GOU L, ZHANG Y L, ZHANG W F . Effect of cotton mechanical picking on fiber qualities in Xinjiang. Journal of Textile Research, 2016,37(7):13-17. (in Chinese)
[36] FAULKNER W B, WANJURA J D, BOMAN R K, SHAW B W, PARNELL Jr C B . Evaluation of modern cotton harvest systems on irrigated cotton: Harvester performance. Applied Engineering in Agriculture, 2011,27(4):497-506.
[37] HUGHS S E, GILLUM M N . Quality effects of current roller-gin lint cleaning. Applied Engineering in Agriculture, 1991,7(6):673-676.
[38] WANJURA J D, FAULKNER W B, HOLT G A, PELLETIER M G . Influence of harvesting and gin cleaning practices on southern high plains cotton quality. Applied Engineering in Agriculture, 2012,28(5):631-641.
[39] TIAN J S, ZHANG X Y, ZHANG W F, LI J F, YANG Y L, DONG H Y, JIU X L, YU Y C, ZHAO Z, XU S Z, ZUO W Q . Fiber damage of machine-harvested cotton before ginning and after lint cleaning. Journal of Integrative Agriculture, 2018,17(5):1120-1127.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] LI ShuYing, ZHU JiaBao, LU XianYong, YE SiHong, MA Yan, MA XiaoYan, CHENG FuRu. The Influence of Redroot Pigweed (Amaranthus retroflexus) Density on Cotton (Gossypium hirsutum) [J]. Scientia Agricultura Sinica, 2017, 50(2): 286-298.
[3] ZHANG Xin-xin, CHEN Ji, LIU Jing-ran, Lü Feng-juan, MA Yi-na, WANG You-hua, ZHOU Zhi-guo, CHEN Bing-lin. Effects of Temperature-Light Factor on Cotton Fiber Qualities at Different Spatial Fruiting Branch Positions [J]. Scientia Agricultura Sinica, 2015, 48(5): 861-871.
[4] SONG Shi-jia, SUN Hong-chun, ZHANG Yong-jiang, LIU Lian-tao, BAI Zhi-ying, LI Cun-dong. The Physiological Characteristics of the Antioxidant System of Colored Cotton and the Effects of Cellulose Accumulation on Cotton Fiber Quality [J]. Scientia Agricultura Sinica, 2015, 48(19): 3811-3820.
[5] NIE Xin-hui, YOU Chun-yuan, BAO Jian, LI Xiao-fang, HUI Hui, LIU Hong-liang, QIN Jiang-hong, LIN Zhong-xu. Exploration of Elite Alleles of Agronomic and Fiber Quality Traits in Xinluzao Cotton Varieties by Association Analysis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2891-2910.
[6] DONG He-Zhong-1, MAO Shu-Chun-2, ZHANG Wang-Feng-3, CHEN De-Hua-4. On Boll-Setting Optimization Theory for Cotton Cultivation and Its New Development [J]. Scientia Agricultura Sinica, 2014, 47(3): 441-451.
[7] LAN Meng-Jiao, YANG Ze-Mao, SHI Yu-Zhen, GE Rui-Hua, LI Ai-Guo, ZHANG Bao-Cai, LI Jun-Wen, SHANG Hai-Hong, LIU Ai-Ying, WANG Tao, YUAN You-Lu. Assessment of Substitution Lines and Identification of QTL Related to Fiber Yield and Quality Traits in BC4F2 and BC4F3 Populations from G.hirsutum ×G.barbadense [J]. Scientia Agricultura Sinica, 2011, 44(15): 3086-3097 .
[8] YUAN Shu-na,HUA Shui-jin,NI Mi,LI Yue-you,WEN Guo-ji,SHAO Ming-yan,ZHANG Hai-ping,ZHU Shui-jin,WANG Xue-de
. Relationship Between Fiber Macroelement Content and Fiber Quality in Colored Cotton
[J]. Scientia Agricultura Sinica, 2010, 43(20): 4169-4175 .
[9] HAO Jun-jie,MA Qi-xiang,LIU Huan-min,JIA Xin-he,DONG Zhong-dong,LIU Shu-mei,CUI Xiao-wei,ZHANG Zhi-xin
. Effects of Grafting Cotton on Verticillium Wilt Resistance,Yield and Fiber Quality of Cotton
[J]. Scientia Agricultura Sinica, 2010, 43(19): 3974-3980 .
[10]

LIN Zhong-xu,FENG Chang-hui,GUO Xiao-ping,ZHANG Xian-long

. Genetic Analysis of Major QTLs and Epistasis Interaction for Yield and Fiber Quality in Upland Cotton#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3036-3047 .
[11] . Relationship Between Nitrogen Concentration in the Subtending Leaf of Cotton Boll and Fiber Quality Indices
[J]. Scientia Agricultura Sinica, 2009, 42(3): 833-842 .
[12] QIN Yong-sheng,YE Wen-xue,LIU Ren-zhong,ZHANG Tian-zhen,GUO Wang-zhen
. QTL Mapping for Fiber Quality Properties in Upland Cotton (Gossypium hirsutum L.)
[J]. Scientia Agricultura Sinica, 2009, 42(12): 4145-4154 .
[13] NAN Zhi-run,LI Hong-fang,ZHANG Huan-yang,LI Jing,LI Jun-feng,WANG Jiao-juan,JIAO Gai-li
. Effects of Transforming Antisense GhADF1 Gene on the Fiber Quality in Upland Cotton (Gossypium hirsutum L.)
[J]. Scientia Agricultura Sinica, 2009, 42(12): 4139-4144 .
[14] YU Shu-xun, SONG Mei-zhen, FAN Shu-li. Advances in Molecular Improvement and Functional Genomic Approaches in Cotton Fiber Quality [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3029-3033.
[15] ,,,,,. Establishing Model of An Integrated Fiber-Quality Index [J]. Scientia Agricultura Sinica, 2006, 39(06): 1130-1137 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!