Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (13): 2553-2563.doi: 10.3864/j.issn.0578-1752.2017.13.014

• HORTICULTURE • Previous Articles     Next Articles

The Difference of Anthocyanin Accumulation Pattern and Related Gene Expression in Two Kinds of Red Flesh Peach

DING TiYu, CAO Ke, FANG WeiChao, ZHU GengRui, CHEN ChangWen, WANG XinWei, WANG LiRong   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
  • Received:2017-01-03 Online:2017-07-01 Published:2017-07-01

Abstract: ObjectiveThe objective of this experiment is to investigate the coloring mechanism of Chinese red-flesh peach germplasms and lay a theoretical foundation for excellent gene identifying and molecular marker assisted breeding in blood-flesh peach accessions.【Method】Eight red flesh peaches and one white flesh peach were  selected as samples. The samples were collected one month after full bloom, and then collected every 10 days until the mature period. The anthocyanin of pulp of different germplasms was extracted with 2% formic acid methanol, determining the absorbance at 510 nm and 700 nm. The expression of 13 key structural genes and regulatory genes associated with anthocyanin synthesis was determined by real-time quantitative PCR (qRT-PCR).【Result】According to the accumulation of anthocyanin at middle-late stages of fruit, eight red-flesh peaches could be divided into two categories. The peak of anthocyanin biosynthesis appeared at mature stage, which was referred to as mature period accumulation type, including Zheng Yin 82-9, Da Hong Pao, Hei Bu Dai, Hong Tao and Tianjin Shui Mi; The peak of anthocyanin synthesis occurred at the middle stage of fruit development, and the content of anthocyanin decreased at mature stage, which was referred to as the mid-developmental accumulation type, including Harrow Blood, Da Guo Hei Tao and Wu Hei Ji Rou Tao. In the structural genes associated with anthocyanin, the expression of PpCHS and PpUFGT was consistent with the trend of the variation of the anthocyanin content of mature period accumulation type germplasms, which were the key speed-limiting genes of these kinds of germplasms. In the mid-developmental accumulation type, the accumulation of anthocyanin in the mesocarp was consistent with the trend of expression of all structural genes. Among the four regulatory genes, only the expression level of PpMYB10.1 was high and the expression pattern was similar to the pattern of anthocyanin accumulation in the two types of red flesh germplasms during fruit developmental stages. 【Conclusion】According to the coloring pattern of peach fruit and the pattern of anthocyanin accumulation, eight red-flesh peaches could be divided into two types, namely mature period accumulation type and mid-developmental accumulation type. The PpCHS and PpUFGT genes were the key structural genes of mature period accumulation type accessions, while PpMYB10.1 played a key role in the synthesis of anthocyanin in all red-flesh peach germplasms.

Key words: red flesh peach, anthocyanin, anthocyanin synthesis related genes

[1]    KONG J M, CHIA L S, GOH N K, CHIA T F, BROUILLAR D R. Analysis and biological activities of anthocyanins. Phytochemistry, 2003, 64(5): 923-933.
[2]    MARTIN C, BUTELLI E, PETRONI K, TONELLI C. How can research on plants contribute to promoting human health? Plant Cell, 2011, 29(3): 1685-1699.
[3]    WANG J, MAZZA G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN activated RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry, 2002, 50(4): 850-857.
[4]    XIA X D, LING W H, MA J, XIA M, HOU M J, WANG Q, ZHU H L, TANG Z H. An anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in apolipoprotein E-deficient mice. Journal of Nutrition, 2006, 136(8): 2220-2225.
[5]    KANG S Y, SEERAM N P, NAIR M G, BOURQUIN L D. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Letters, 2003, 94(1): 13-19.
[6]    WU X L., PRIOR R L. Systematic identification and characterization of anthocvanins by HPLC -ESI-MS/MS in common foods in the United States: Fruits and Berries. Journal of Agricultural and Food Chemistry, 2005, 53(7): 2589-2599.
[7]    CEVALLOS-CASALS B A, BYRNE D, OKIE W R, CISNEROS- ZEVALLOS L. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry, 2006, 96(2): 273-280.
[8]    沈志军, 马瑞娟, 俞明亮, 许建兰, 蔡志翔, 倪林箭, 颜少宾. 桃三种肉色类型果实抗氧化因子的比较评价. 中国农业科学, 2012, 45(11): 2232-2241.
SHEN Z J, MA R J, YU M L, XU J L, CAI Z X, NI L J, YAN S B. Evaluation of anti-oxidant factors in peach with three types of flesh color. Scientia Agricultura Sinica, 2012, 45(11): 2232-2241. (in Chinese)
[9]    KRIS-ETHERTON P, HECKER K, BONANOME A, COVAL S, BINKOSKI A, KIRSTEN H, GRIEL A, ETHERTON T. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 2002, 113(9): 71-88.
[10]   WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126(2): 485-493.
[11]   BLAKE J S. Progress in peach breeding. Proceedings of the American Society of Horticultural Sciences, 1937, 35: 49-53.
[12]   HSIA C L, LUH B S, CHICHESTER C O. Anthocyanin in freestone peaches. Journal Food Science, 1965, 30(1): 5-12.
[13]   VAN BLARICOM L, SENN T. Anthocyanin pigments in freestone peaches grown in the Southeast. Proceedings of the American Society of Horticultural Sciences, 1967, 90(6): 541-545.
[14] CHAPARRO J, WERNER D, WHETTEN R, O’MALLEY D M. Inheritance, genetic interaction, and biochemical characterization of anthocyanin phenotypes in peach. Journal Heredity, 1995,86(1): 32-38.
[15]   WERNER D J, CRELLER M A, CHAPARRO J X. Inheritance of the blood-fleshtrait in peach. Hortscience, 1998, 33(7): 1243-1246.
[16]   SHEN Z, CONFOLENT C, LAMBERT P, POËSSEL J, QUILOT-TURION B, YU M, MA R, PASCAL T. Characterization and genetic mapping of a new blood-?esh trait controlled by the single dominant locus DBF in peach. Tree Genetics and Genomes, 2013(9): 1435-1446.
[17]   ZHOU H, WANG K L, WANG H L, GU C, ANDREW P D, RICHARD V E, HE Y P, Andrew C, Han Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal, 2015, 82(1): 105-121.
[18]   原永兵, 刘成连, 鞠志国. 苹果果皮红色形成的机制//园艺学年评. 北京: 科学出版社, 1995: 12-13.
YUAN X B, LIU C L, JU Z G. Mechanism of red formation in apple peel//Annual Review of Horticulture. Beijing: Science Press, 1995: 12-13. (in Chinese)
[19]   JU Z G, YUAN Y B, LIU C L, XIN S H. Relationship among phenylalanine ammonia-lyase activity, simple phenol concentrations and anthocyanin accumulation in apple. Scientia Horticulturae, 1995, 61: 215-226.
[20]   LISTER C E, LANCASTER J E. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. Journal Science of Food Agriculture, 1996, 71(3): 313-320.
[21]   张学英. 李果实着色与花色素苷合成机理研究[D]. 杭州: 浙江大学, 2008.
ZHANG X Y. Study on the mechanism of fruit coloring and anthocyanin biosynthesis [D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
[22] JU Z G, LIU C L, YUAN Y B. Activities of chalcone synthase     and UDPGaI: Flavonoid-3-O-glycosyl transferase in relation to anthocyanin synthesis in apple. Scientia Horticuture, 1995, 63: 175-185.
[23]   HONDA C, KOTADA N, WADA M, KONDO S, KOBAYASHI S, SOEJIMA J, ZHANG Z, TSUDA T, MORIGUCHI T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiology and Biochemistry, 2002, 40(11): 955-962.
[24]   KIM S H, LEE J R, HONG S T, YOO Y K, AN G, KIM S R. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Science, 2003, 165(2): 403-413. 
[25]   ESPLEY R V, HELLENS R P, ALLAN A C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010, 10(50): 1471-1488.
[26]   王延玲, 张艳敏, 冯守千, 田长平, 王海波, 刘遵春, 宋杨, 陈学森. 新疆红肉苹果转录因子MdMYB 10基因的克隆、序列分析及原核表达. 中国农业科学, 2010, 43(13): 2735-2743.
WANG Y L, ZHANG Y M, FENG S Q, TIAN Z P, WANG H B, LIU Z C, SONG Y, CHEN X S. Cloning, sequence analysis and prokaryotic expression of transcription factor MdMYB 10 gene in Xinjiang red-meat apple. Scientia Agricultura Sinica, 2010, 43(13): 2735-2743. (in Chinese)
[27]   汪祖华, 庄恩及. 中国果树志(桃卷). 北京: 中国林业出版社, 2001.
Wang Z H, Zhuang E J. The China Fruit Plant Monograph- Peach Flora. Beijing: Chinese Forest Press, 2001.(in Chinese)
[28]   王富荣, 何华平, 龚林忠, 王会良, 顾霞, 诸小敏. 湖北地方红肉桃种质资源收集、评价及利用. 湖北农业科学, 2013, 52(15): 3562-3565.
WANG F R, HE H P, GONG L Z, WANG H L, GU X, ZHU X M. Collection, evaluation and breeding utilization of red-flesh peach germplasm resources in Hubei province. Hubei Agricultural Sciences, 2013, 52(15): 3562-3565. (in Chinese)
[29]   王富荣, 何华平, 龚林忠, 顾霞. 红肉桃种质资源的AFLP分析. 湖北农业科学, 2008, 47(2): 138-141.
WANG F R, HE H P, GONG L Z, GU X. Analysis of genetic relationship of red-flesh peach germplasm resource by AFLP markers. Hubei Agricultural Sciences, 2008, 47(2): 138-141. (in Chinese)
[30]   贾敬贤. 果树种质资源目录. 北京: 中国农业出版社, 1993.
Jia J X. Index of Fruit Tree Germplasm. Beijing: China Agriculture Press, 1993. (in Chinese)
[31]   孙婧超, 刘玉田, 赵玉平, 欧燕, 庞少华. pH示差法测定蓝莓酒中花色素苷条件的优化. 中国酿造, 2011(11): 171-174.
SUN J C, LIU T Y, ZHAO Y P, OU Y, PANG S H. Determination of anthocyanin in blueberry wine by pH differential method. Chinese Brewing, 2011(11): 171-174. (in Chinese)
[32]   TONG Z G, GAO Z H, WANG F, ZHOU J, ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10(1): 71.
[33]   LIVAK K J., SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods, 2001, 25(4): 402-408.
[34]   RAVAGLIA D, ESPLEY RV, HENRY-KIRK R A, ANDREOTTI C, ZIOSI V, HELLENS R P, COSTA G, ALLAN A C. Transcriptional regulation of ?avonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13(68): 1-14.
[35]   FRANCIS F J. Food colorants: Anthocyanins. Critical Reviews in Food Science and Nutrition, 1989, 28(4): 273-314.
[36]   RAHIM M A, BUSATTO N, TRAINOTTI L. Regulation of anthocyanin biosynthesis in peach fruits. Planta, 2014, 240(5): 913-929.
[37]   章秋平, 李疆, 王力荣, 朱更瑞, 方伟超, 曹珂, 陈昌文, 冯义彬. 红肉桃果实发育过程中色素和糖酸含量的变化. 果树学报, 2008, 25(3): 312-315.
ZHANG Q P, LI J, WANG L R, ZHU G R, FANG W C, CAO K, CHEN C W, FENG Y B. Study on the changes of contents of pigments, sugar and acid of blood flesh peach cultivar during fruit development. Journal of Fruit Science, 2008, 25(3): 312-315. (in Chinese)
[38]   鞠志国, 原永兵, 刘成连, 戴洪义, 战淑敏. 苹果果皮中酚类物质合成规律的研究. 莱阳农学院学报, 1992, 9(3): 222-225.
JU Z G, YUAN Y B, LIU C L, DAI H Y, ZHAN S M. Study on synthesis of phenolic compounds in apple peel. Journal of Laiyang Agricultural College, 1992, 9(3): 222-225. (in Chinese)
[39]   周君, 陈宗玲, 张琼, 王红清. 套袋对桃果实成熟过程中酚酸类和类黄酮类物质积累的影响. 园艺学报, 2009, 36(12): 1717-1724.
ZHOU J, CHEN Z L, ZHANG Q, WANG H Q. Effects of bagging on the accumulation of phenolic acids and flavonoids in peach fruits during maturation. Acta Horticulturae Sinica, 2009, 36(12): 1717-1724. (in Chinese)
[40]   Andreotti C, Ravaglia D, Ragaini A, Costa G. Phenolic compounds in peach [Prunus persica (L.) Batsch]        cultivars at harvest and during fruit maturation. Annals of Applied Biology, 2008, 153(1): 11-23.
[41]   JIAO Y, MA R J, SHEN Z J, YAN J, YU M L. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus Persica (L.) Batsch) cultivars during fruit development. Journal of Zhejiang University Science B, 2014, 15(9): 809-819.
[42]   BOSS P K, DAVIES C, ROBINSON S P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology, 1996, 32(3): 565-569.
[43]   KOBAYASHI S, ISHIMARU M, DING C K, YAKUSHIJI H, GOTO N. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Science, 2001, 160(3): 543-550.
[44]   MUELLER L A, GOODMAN C D, SILADY R A, WALBOT V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiology,2000, 123(4): 1561-1570.
[45]   LIN-WANG K, BOLITHO K, GRAFTON K, KORTSTEE A, KARUNAIRETNAM S, MCGHIE T, ESPLEY R, HELLENS R, ALLAN A. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010, 10: 50.
[46]   GILLEN A M, BLISS F A. Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. Journal of the American Society for Horticutural Science, 2005, 130(1): 24-33.
[47]   CAO K, WANG L R, ZHU G R, FANG W C, CHEN C W, LUO J. Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genetics & Genome, 2012, 8(5): 975-990.
[48]   LI X W, MENG X Q, JIA H J, YU M L, MA R J, WNAG L R, CAO  K, SHEN Z J, NIU L, TIAN J B, CHEN M J, XIE M, ARUS P, GAO Z S, ARANZANA M J. Peach genetic resources: diversity, population structure and linkage disequilibrium. BMC Genetics, 2013, 14: 84.
[49]   MICHELETTI D, DETTORI M T, MICALI S, ARAMINI V, PACHECO I, LINGE C D S, FOSCHI S, BANCHI E, BARRENECHE T, QUILOT-TURION B, LAMBERT P, PASCAL T, IGLESIAS L, CARBÓ J, WANG L R, MA R J, LI X W, GAO Z S, NAZZICARI N, TROGGIO M, BASSI D, ROSSINI L, VERDE I, LAURENS F, ARÚS P, ARANZANA M J. Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS One, 2015, 10(9): e0136803.
[1] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[2] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[3] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[4] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[5] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[6] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[7] XU Ming,LIN ShiQiang,NI DongXin,YI HenJie,LIU JiangHong,YANG ZhiJian,ZHENG JinGui. Cloning and Function Characterization of Chalcone Synthase Gene AgCHS1 in Ampelopsis grossedentata [J]. Scientia Agricultura Sinica, 2020, 53(24): 5091-5103.
[8] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[9] SONG Yang,LIU HongDi,WANG HaiBo,ZHANG HongJun,LIU FengZhi. Molecular Cloning and Functional Characterization of VcNAC072 Reveals Its Involvement in Anthocyanin Accumulation in Blueberry [J]. Scientia Agricultura Sinica, 2019, 52(3): 503-511.
[10] XU YunMei, LI YuMei, JIA YuXin, ZHANG ChunZhi, LI CanHui, HUANG SanWen, ZHU GuangTao. Fine Mapping and Candidate Genes Analysis for Regulatory Gene of Anthocyanin Synthesis in Red-Colored Tuber Flesh [J]. Scientia Agricultura Sinica, 2019, 52(15): 2678-2685.
[11] LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan. The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica [J]. Scientia Agricultura Sinica, 2019, 52(11): 1961-1969.
[12] AN JianPing, SONG LaiQing, ZHAO LingLing, YOU ChunXiang, WANG XiaoFei, HAO YuJin. Cloning and Functional Characterization of an Auxin Response Factor Gene MdARF5 in Apple [J]. Scientia Agricultura Sinica, 2018, 51(7): 1345-1352.
[13] XU Xi, REN MingJian, LI LuHua, YANG XiCui, XU RuHong. Differential Expression of Grain Pigment Related Genes of Guizimai No.1 [J]. Scientia Agricultura Sinica, 2018, 51(2): 203-216.
[14] SU Fan, XUE Jia, YANG Xi, DENG Hong, MENG YongHong, GUO YuRong. Effects of Phenolic Acids on Copigmentation and Stability of Anthocyanins in Red-Fleshed Apple [J]. Scientia Agricultura Sinica, 2017, 50(4): 732-742.
[15] AN JianPing, SONG LaiQing, ZHAO LingLing, YOU ChunXiang, WANG XiaoFei, HAO YuJin. Effects of Overexpression of Apple Cytokinin Response Factor Gene MdCRF6 on Anthocyanins Accumulation and Salt Stress Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(16): 3196-3204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!