Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (12): 2349-2358.doi: 10.3864/j.issn.0578-1752.2017.12.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Ultrasound on Chemical Forces and Water Holding Capacity Study of Heat-Induced Myofibrillar Protein Gel

WANG JingYu1, YANG YuLing1*, KANG DaCheng2, TANG XiaoZhi1, ZHANG Xing1, MA Yun1, NI WenXi1   

  1. 1College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023; 2College of Food Science and Technology, Nanjing Agricultural University/Collaborative Innovation Center for Meat Production and Processing, Quality and Safety Control, Nanjing 210095
  • Received:2016-10-31 Online:2017-06-16 Published:2017-06-16

Abstract: 【Objective】 The influences of ultrasound on chemical forces and water holding capacity of myofibrillar protein (MP) gel were studied. The relationship between MP gel chemical forces and WHC was revealed.【Method】AA type broilers were slaughtered. The MP was extracted from breast muscle. The MP solution and heat induced gel in different ultrasound times were prepared. Total sulfhydryl group (SH) content changes of gel were used to reflect the formation of disulfide bond. Surface hydrophobicity and Zeta potential value of the gel were employed to present the hydrophobic interaction and electrostatic repulsion, respectively. The ratio of I850/I830 was used to show the hydrogen bonding changes of gel. Water holding capacity (WHC) of MP gel was calculated by high-speed centrifuge.【Result】As the ultrasonic time (UT) increased (0-6 min), the total SH contents of the MP  gel decreased and reactive SH content significantly increased, at stronger UT (6-15 min), the total SH and reactive SH contents all decreased. At short time (0-6 min), the changing trends of MP and MP gel about the total SH and reactive SH content were the same, while the total SH and reactive SH contents of MP all had no significant changes (P>0.05) over 6 min, suggesting that UT promoted internal SH of MP into disulfide bond for shorter time, and UT and heating gel for longer time work together to promote reactive SH into disulfide bond. Surface hydrophobicity of MP gels increased from 1 194.1 to 1 489.5 (P<0.05) and decreased from 1 489.5 to 1 230.8 at last, for the cavitation phenomenon induced by UT could bring the hydrophobic regions into the surface, while at UT>6 min, the hydrophobic group was wrapped in the gel network. Zeta potential value of the gel changed from 6.03 to 7.68(P<0.05)(0-6 min), and then decreased over 6 min, which showed that ultrasonic wave made protein molecular chain unfolding, negatively charged by exposure, resulting in the stronger electrostatic repulsion, while excessive expansion of MP molecules were not conducive to the electrostatic force of the gel. After moderate UT (0-6 min), the normalized intensity of I850/I830 ratio increased from 0.9805 to 1.023 (P<0.05), which indicated that more phenolic hydroxyl groups of tyrosine were exposed to the aqueous environment, generating hydrogen bonds with water molecules, while the ratio decreased at UT>6 min, hydrogen bonds between water molecules and protein were weaken. At UT ≤6 min, the WHC of samples increased sharply from 47.5899% to 72.9855% (6 min) (P<0.05), while at 9 min and above, WHC dropped gradually to 44.356%. Results of the correlation analysis showed that WHC of MP gel was unrelated to total SH content (P>0.05) and was significantly related to reactive SH content (P<0.05) and had a significantly correlation with Zeta potential absolute value, the surface hydrophobicity and hydrogen bonding (P<0.01).【Conclusion】Ultrasound has significant impacts on both chemical forces and water holding capacity of the MP gel. Hydrophobic force, electrostatic repulsion and hydrogen bonding play important roles in holding water in MP gels, disulfide bonds not. Thus a value of 6 min is the optimum time for the water holding capacity of MP gel, under this condition, hydrophobic force, hydrogen bonding and electrostatic repulsion of the gel are maximum, resulting in the gel network structure of uniform density, and retaining water at best.

Key words: myofibrillar protein gel, disulfide bond , hydrophobic force , electrostatic repulsion, hydrogen bond, water holding capacity, microstructure

[1] CHANDRAPALA J, OLIVER C, KENTISH S, ASHOKKUMAR M. Ultrasonics in food processing. Ultrasonics Sonochemistry, 2012, 19(5): 975-983.
[2] JAMBRAK A R, LELAS V, MASON T J, KRESIC G, BADANJAK M. Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 2009, 93(4): 386-393.
[3] GULSEREN I, GUZEY D, BRUCE B D, JOCHEN W. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 2007, 14(2): 173-183.
[4] PUOLANNE E, HALONEN M. Theoretical aspects of water-holding in meat. Meat Science, 2010, 86(1): 151-165.
[5] ZHANG Z Y, YANG Y L, TANG X, CHEN Y, YOU Y. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 2015, 188: 111-118.
[6] JAMBRAK A R, MASON T J, LELAS V, LARYSA P, ZORAN H. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food engineering, 2014, 121: 15-23.
[7] LI K, KANG Z L, ZOU Y F, XU X L, ZHOU G H. Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. Journal of food science and technology, 2015, 52(5): 2622-2633.
[8] HU H, WU J H, EUNICE C Y, CHAN L, ZHU L, ZHANG F, XU X Y, FAN G, WANG L F, HUANG C J, PAN S Y. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 2013, 30(2): 647-655.
[9] ZISU B, BHASKARACHARYA R, KENTISH S, MUTHUPANDIAN A . Ultrasonic processing of dairy systems in large scale reactors. Ultrasonics Sonochemistry, 2010, 17(6): 1075-1081.
[10] ZHANG Z Y, REGENSTEIN J M, ZHOU P, YANG Y L. Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel. Ultrasonics Sonochemistry, 2017, 34: 960-967.
[11] MCCLEMENTS D J. Advances in the application of ultrasound in food analysis and processing. Trends in Food Science & Technology, 1995, 6(9): 293-299.
[12] 杨玉玲, 游远, 彭晓蓓 陈银基. 加热对鸡胸肉肌原纤维蛋白结构与凝胶特性的影响. 中国农业科学, 2014, 47(10): 2013-2020.
YANG Y L, YOU Y, PENG X B, CHEN Y J. Influence of heating on structure and gel properties of myofibrillar proteins from chicken breast muscle. Scientia Agricultura Sinica, 2014, 47(10): 2013-2020. (in Chinese)
[13] ZHAO Y Y, WANG P, ZOU Y F, LI K, KANG Z L, XU X L, ZHOU G H. Effect of pre-emulsification of plant lipid treated by pulsed ultrasound on the functional properties of chicken breast myofibrillar protein composite gel. Food Research International, 2014, 58: 98-104.
[14] LIU R, ZHAO S M, XIE B J, XIONG S B. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties. Food Hydrocolloids, 2011, 25(5): 898-906.
[15] ZHANG Z Y, YANG Y L, TANG X Z, CHEN Y J, YOU Y. Effects of ionic strength on chemical forces and functional properties of heat-induced myofibrillar protein gel. Food Science and Technology Research, 2015, 21(4): 597-605.
[16] KOCHER P N, FOEGEDING E A. Microcentrifuge-based method for measuring water-holding of protein gels. Journal of Food Science, 1993, 58(5): 1040-1046.
[17] CARR H Y, PURCELL E M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical review, 1954, 94(3): 630.
[18] MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times. Review of scientific instruments, 1958, 29(8): 688-691.
[19] OFFER G, KNIGHT P, JEACOCKE R, ALMOND R, COUSINS T, ELSEY J, PARSONS N, SHARP A, STARR R, PURSLOW P. The structural basis of the water-holding, appearance and toughness of meat and meat products. Food structure, 1989, 8(1): 17.
[20] HAN M Y, WANG P, XU X L, ZHOU G H. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Research International, 2014, 62: 1175-1182.
[21] HAMADA M, ISHIZAKI S, NAGAI T. Variation of SH content and kamaboko-gel forming ability of shark muscle protein by electrolysis. Journal of Shimonoseki University of Fisheries, 1994, 42: 131-135.
[22] SMYTH A B, SMITH D M, O'NEILL E. Disulfide bonds influence the Heat-induced gel properties of chicken breast muscle myosin. Journal of food science, 1998, 63(4): 584-587.
[23] WANG S F, SMYTH A B, SMITH D M. Gelation properties of myosin: role of subfragments and actin in macromlecular interactions in food technology. American Chemical Society, 1996: 650.
[24] FEMANDEZ-DIAZ M D, BARSOTTI L, DUMAY E, CHEFTEL J C. Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. Journal of Agricultural and Food Chemistry, 2000, 48(6): 2332-2339.
[25] ARZENI C, MARTINEZ K, ZEMA P, ARIAS A, PEREZ O E, PILOSOF A M R. Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 2012, 108(3): 463-472.
[26] CAMPBEL L J, GU X, DEWAR S J, EUSTON S R. Effects of heat treatment and glucono-δ-lactone-induced acidification on characteristics of soy protein isolate. Food Hydrocolloids, 2009, 23(2): 344-351.
[27] SANTE-LHOUTELLIER V, AUBRY L, GATELLIER P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. Journal of Agricultural and Food Chemistry, 2007, 55(13): 5343-5348.
[28] ZHANG Z Y, YANG Y L, ZHOU P, ZHANG X, WANG J Y. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry, 2017, 217: 678-686.
[29] HUNTER R J. Zeta Potential in Colloid Science: Principles and Applications. New York/London: Academic press, 2013.
[30] RUNKANA V, SOMASUNDARAN P, KAPUR P C. Mathematical modeling of polymer-induced flocculation by charge neutralization. Journal of Colloid and Interface Science, 2004, 270(2): 347-358.
[31] HANAOR D, MICHELAZZI M, LEONELLI C, SORRELL C C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO 2. Journal of the European Ceramic Society, 2012, 32(1): 235-244.
[32] BERTRAM H C, ERSEN H J. Applications of NMR in meat science. Annual Reports on NMR Spectroscopy, 2004, 53: 157-202.
[33] RUAN R R, CHEN P L. Water in foods and biological materials. CRC Press, 1998.
[34] YASUI T, ISHIOROSHI M, NAKANO H, SAMEJIMA K. Changes in shear modulus, ultrastructure and spin-spin relaxation times of water associated with heat-induced gelation of myosin. Journal of Food Science, 1979, 44(4): 1201-1204.
[35] PEARCE K L, ROSENVOLD K, ANDERSEN H J, HOPKINS D L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes-A review. Meat Science, 2011, 89(2): 111-124.
[36] KOHYAMA K, SANO Y, DOI E. Rheological characteristics and gelation mechanism of tofu (soybean curd). Journal of Agricultural and Food Chemistry, 1995, 43(7): 1808-1812.
[37] OFFER G, TRINICK J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Science, 1983, 8(4): 245-281.
[38] SHARP A, OFFER G. The mechanism of formation of gels from myosin molecules. Journal of the Science of Food and Agriculture, 1992, 58(1): 63-73.
[1] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[2] SHAO JingYi,LI XiaoFan,YU WeiZhen,LIU Peng,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Combined Effects of High Temperature and Drought on Yield and Stem Microstructure of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631.
[3] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[4] KE FuLai,ZHU Kai,LI ZhiHua,SHI YongShun,ZOU JianQiu,WANG YanQiu. Formation Regulating and Micro-Structure of Sorghum Starch with Different Types of Endosperm [J]. Scientia Agricultura Sinica, 2020, 53(14): 2774-2785.
[5] WenJian YANG,HaoLiang PU,LiuQing WANG,QiuHui HU,Fei PEI. Quality Change and Bacteria Succession of Dried Carrot Stored at Different Water Activities [J]. Scientia Agricultura Sinica, 2019, 52(20): 3661-3671.
[6] NING JiYing, GU FengYing, GAO PingPing, CAO JingJing, LUO QiQi, WANG Feng. Freeze-Thaw Stability of Waxy Corn Starch Gel [J]. Scientia Agricultura Sinica, 2017, 50(8): 1514-1524.
[7] ZHANG Xing, YANG YuLing, MA Yun, WANG JingYu. Effects of pH on the Non-Covalent Forces and Structure of Myofibrillar Protein and Heat Induced Gel [J]. Scientia Agricultura Sinica, 2017, 50(3): 564-573.
[8] Lü San-san, DU Guo-dong, LIU Zhi-kun, Lü De-guo, LI Shuang. Effects of Orchard Mulching Grass on the Microstructure and Function of Photosystem in Apple Leaves [J]. Scientia Agricultura Sinica, 2015, 48(1): 130-139.
[9] YU Jing, RAN Cong-fu, LI Xue-jun, SHAO Hui, LI Li-qun. Study on Endosperm Development and Morphological Features of Starch Granules in Waxy Wheat Shannuo 1 and Non-Waxy  Wheat Xinong 1330 [J]. Scientia Agricultura Sinica, 2014, 47(22): 4405-4416.
[10] LIU Yue-Lan, YU Zhen-Wen, ZHANG Yong-Li, SHI Yu, WANG Dong- . Effects of Supplemental Irrigation Based on the Measurement of Moisture Content in Soil Layers at Jointing and Anthesis Stages on the Chloroplast Ultramicrostructure and Chlorophyll Fluorescence Parameters of Flag Leaves of Winter Wheat [J]. Scientia Agricultura Sinica, 2014, 47(14): 2751-2761.
[11] ZHENG Yuan-Rong, LIU Zhen-Min, MO Bei-Hong, GAO Hong-Yan, SUN Ke-Jie. Effects of Microstructure Change on the Texture of Cheddar Cheese During Ripening [J]. Scientia Agricultura Sinica, 2012, 45(3): 503-508.
[12] CUI Hai-Yan, JIN Li-Bin, LI Bo, ZHANG Ji-Wang, ZHAO Bin, DONG Shu-Ting, LIU Peng. Effects of Shading on Stalks Morphology, Structure and Lodging of Summer Maize in Field [J]. Scientia Agricultura Sinica, 2012, 45(17): 3497-3505.
[13] LI Yi-nian,DING Wei-min.

Analysis on Microstructure Difference of Ventral and Dorsal Side of Rice Grain

[J]. Scientia Agricultura Sinica, 2010, 43(16): 3473-3480 .
[14] FEI Ying,HAN Min-yi,YANG Ling-han,ZHOU Guang-hong,XU Xing-lian,PENG Zeng-qi
. Studies on the Secondary Structure and Heat-Induced Gelation of Pork Myofibrillar Proteins as Affected by pH
[J]. Scientia Agricultura Sinica, 2010, 43(1): 164-170 .
[15] HAN Min-yi,FEI Ying,XU Xing-lian,ZHOU Guang-hong. Heat-Induced Gelation of Myofibrillar Proteins as Affected by pH——A Low Field NMR Study
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2098-2104 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!