Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (8): 1514-1524.doi: 10.3864/j.issn.0578-1752.2017.08.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Freeze-Thaw Stability of Waxy Corn Starch Gel

NING JiYing, GU FengYing, GAO PingPing, CAO JingJing, LUO QiQi, WANG Feng   

  1. Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193
  • Received:2016-08-04 Online:2017-04-16 Published:2017-04-16

Abstract: 【Objective】The objective of this study was to research on the changes of the physical properties of waxy corn starch gel by multiple freeze-thaw cycles (FTC), which has relation with freeze-thaw stability. Results of his research will provide scientific supports for popularization and application of waxy corn starch in frozen foods. 【Method】 An ordinary corn starch samples (YM) and two waxy corn starch samples (WCS) were taken as the control and research materials, respectively. The syneresis of starch gels was determined by centrifugation-filtration. The gelatinization enthalpy, retrogradation enthalpy, and ice melting enthalpy of starch gels were determined by DSC. The pasting properties of starches were determined by Brabender Viscograph. The texture of starch gels were determined by Texture Analyser. The dynamic rheological properties of starch gels were determined by dynamic rheometer. The microstructure of starch gels were observed by SEM.【Result】The result of syneresis rate showed that after the first FTC, WCS displayed ultra-strong ability of holding water. WCS2 had the strongest ability to hold water, and the syneresis rate was 5.75%. However, YM had the weakest ability to hold water, and the syneresis rate was more than 50%. The results of the retrogradation rate and ice melting enthalpy showed that they gradually increased with the increase of freeze-thaw cycles. And there was a significant difference in the retrogradation rate and ice melting enthalpy among 1, 3, and 5 FTCs, which showed the retrogradation degree and freezable water increased because of multiply freeze-thaw cycles. After the first FTC, the retrogradation rate of WCS and YM were 17%-18% and 40%-50%, respectively. And after the first FTC, ice melting enthalpy of WCS and YM was about 540 J·g-1 and 555 J·g-1, respectively. The result of hardness showed that the hardness of starch gels increased obviously after five FTCs, and the hardness of WCS and YM was 45-100 g and 440 g, respectively. The result of dynamic rheological properties showed that tanδ of starch gels gradually decreased with the increase of freeze-thaw cycles. However, tanδ of WCS was always higher than tanδ of YM, which showed WCS gels were softer and more sticky. The result of pasting properties showed that WCS was not easy to aging in the process of cooling. The result of microstructure showed that the structure of starch gels changed obviously after five FTCs. The matrix surrounding pores of WCS gels were thin and atypical. However, the matrix surrounding pores of YM gel were thick and typical.【Conclusion】The ability of WCS gels resisting undesirable physical changes caused by temperature fluctuations is strong when WCS gels undergone FTC treatment. And its freeze-thaw stability is better than YM gel. This research has important reference values for application of waxy corn starch in frozen foods.

Key words: waxy corn starch, freeze-thaw stability, syneresis rate, dynamic rheological properties, microstructure

[1]    TENG L, CHIN N, YUSOF Y. Rheological and textural studies of fresh and freeze-thawed native sago starch-sugar gels. II. Comparisons with other starch sources and reheating effects. Food Hydrocolloids, 2013, 31(2): 156-165.
[2]    WANG L, XIE B J, XIONG G Q. The effect of freeze-thaw cycles on microstructure and physicochemical properties of four starch gels. Food Hydrocolloids, 2013, 31: 61-67.
[3]    WANG Y J, JANE J. Correlation between glass transition temperature and starch retrogradation in the presence of sugars and maltodextrins. Cereal Chemistry, 1994, 71(6): 527-531.
[4]    YUAN R C, THOMPSON D B. Freeze-thaw stability of three waxy maize starch pastes measured by centrifugation and calorimetry. Cereal Chemistry, 1998, 75(4): 571-573.
[5]    ELIASSON A C, KIM H R. Changes in reheological properties of hydroxypropyl potato starhes pastes during frezze-thaw treatment. A rheological approach for evaluation of freeze-thaw stability. Journal of Texture Studies, 1992, 23(3): 279-295.
[6]    CHAROENREIN S, TATIRAL O, MUADKLAY J. Use of centrifugation–filtration for determination of syneresis in freeze–thaw starch gels. Carbohydrate Polymers, 2008, 73: 143-147.
[7]    ARUNYANART T, CHAROENREIN S. Effect of sucrose on the freeze-thaw stability of rice starch gels: correlation with microstructure and freezable water. Carbohydrate Polymers, 2011, 74(3): 514-518.
[8]    CHAROENREIN S, TATIRAT O, RENGSUTTHI K, THONGNGAM M. Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohydrate Polymers, 2011, 83(1): 291-296.
[9]    WANG L, YIN Z, WU J. A study on freeze-thaw characteristics and microstructure of Chinese water chestnut starch gels. Journal of Food Engineering, 2013, 88(2): 186-192.
[10]   CHAROENREIN S, PREECHATHAMMAWONG N. Effect of waxy rice flour and cassava starch on freeze–thaw stability of rice starch gels. Carbohydrate Polymers, 2012, 90: 1032-1037.
[11]   YAMAZAKI E, SAGO T, KASUBUCHI Y. Improvement on the freeze-thaw stability of corn starch gel by the polysaccharide from leaves of Corchorus olitorius L. Carbohydrate Polymers, 2013, 94: 555-560.
[12]   KARIM A A, NORZIAH M H, SEOW C C. Methods for the study of starch retrogradation. Food Chemistry, 2000, 71(1): 9-36.
[13]   KAUR L, SINGH J, SINGH H, MCCARTHY O J. Starch-cassia gum interactions: A microstructure-rheology study. Food Chemistry, 2008, 111: 1-10.
[14]   MORRIS V J. Starch gelation and retrogradation. Food Science and Technology, 1990, 1: 2-6.
[15]   SAARTRATRA S, PUTTANLEKB C, RUNGSARDTHONG V, UTTAPAP D. Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 2015, 61: 211-221.
[16]   CHEN Z, SCHOLS H, VORAGEN A. Physicochemical properties of starches obtained from three varieties of Chinese sweet potatoes. Journal of Food Science, 2003, 68(2): 431-437.
[17]   SRICHUWONG S, ISONO N, JIANG H X. Freeze-thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydrate Polymers, 2012, 87: 1275-1279.
[18]   SINGH N, SINGH J, KAUR L, SODHI N S, GILL B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003, 81(2): 219-231.
[19] FERRERO C,MARTINO M,ZARITZKY N. Effect of hydrocolloids on starch thermal transitions, as measured by DSC. Journal of Thermal Analysis and Calorimetry, 1996, 47(5): 1247-1266.
[20]   SANDHU K S, KAUR M, SINGH N, LIM S T. A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology, 2008, 41: 1000-1010.
[21]   THOMAS D J, ATWELL W A. Starches. St. Paul, Minnesota, USA: Eagan Press, 1999.
[22]   SANDHU K S, SINGH N. Some properties of corn starches II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 2007, 101: 1499-1507. 
[23]   王冠青. 淀粉种类及氯化钠对淀粉冻融稳定性的影响[D]. 无锡: 江南大学, 2015.
WANG G Q. The effect of types of starch and sodium chloride on freeze-thaw stability of starch [D]. Wuxi: Jiangnan University, 2015. (in Chinese)
[24]   PABLO D, ALBERTO E, MARIA C A. Effect of freezing and frozen storage on the gelatinization and retrogradation of amylopectin in dough baked in a differential scanning calorimeter. Food Research International, 2013, 36: 357-363.
[25]   HIGUCHI A, LIJIMA T. D.s.c.investigation of the states of water in poly (vinyl alcohol) membranes. Polymer, 1985, 26(8): 1207-1211.
[26]   贾春利, 黄卫宁, 邹奇波. 热稳定冰结构蛋白对小麦淀粉凝胶冻融稳定性的影响. 食品科学, 2012, 33(7): 83-87.
JIA C L, HUANG W N, ZOU Q B. The effect of TSISP on freeze-thaw stability of wheat starch gel. Food Science, 2012, 33(7): 83-87. (in Chinese)
[27]   SAE-KANG V, SUPHANTHARIKA M. Influence of pH and xanthan gum addition on freeze-thaw stability of tapioca starch pastes. Carbohydrate Polymers, 2006, 65: 371-380.
[28]   VU DANG H, LOISEL C, DESRUMAUX A. Rheology an microstructure of cross-linked waxy maize starch/whey protein suspensions. Food Hydrocolloids, 2012, 23(7): 1678-1686.
[29]   FERRERO C, MARTINO M N, ZARITZKY N E. Effect of freezing rate and xanthan gum on the properties of corn starch and wheat flour pastes. International Journal of Food Science and Technology, 1993, 28: 481-498.
[30]   YUAN R C, THOMPSON D B. Freeze-thaw stability of three waxy maize starch pastes measured by centrifugation and calorimetry. Cereal Chemistry Journal, 1998, 75(4): 571-573.
[1] FENG Xiao,ZHANG Fan,CHEN Ying,CHENG JiaXin,CEN KaiYue,TANG XiaoZhi. Effects of Adding Quinoa Protein Pickering Emulsion on Freeze- Thaw Stability of Fish Surimi Gel [J]. Scientia Agricultura Sinica, 2022, 55(10): 2038-2046.
[2] LI XiaoFei,LI PeiYuan,LI AnQi,YU WenYan,GUO Chuo,YANG Xi,GUO YuRong. Effects of Xanthan Addition on the Gel Properties and Gel Mechanism of Alkaline-Induced Konjac Glucomannan Gels [J]. Scientia Agricultura Sinica, 2020, 53(14): 2941-2955.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!