Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (16): 3174-3187.doi: 10.3864/j.issn.0578-1752.2016.16.011

• HORTICULTURE • Previous Articles     Next Articles

Content and Analysis of Biosynthesis-Related Genes of Flavonoid Among Four Strains of Malus sieversii f. neidzwetzkyana F1 Population

XU Hai-feng, WANG Nan, JIANG Sheng-hui, WANG Yi-cheng, LIU Jing-xuan, QU Chang-zhi, WANG De-yun, ZUO Wei-fang, ZHANG Jing, JI Xiao-hao, ZHANG Zong-ying, MAO Zhi-quan, CHEN Xue-sen   

  1. College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2016-01-31 Online:2016-08-16 Published:2016-08-16

Abstract: 【Objective】In order to develop the theory and breeding technology of functional apple, the molecular mechanism of the differences of flavonoid biosynthesis in several cross progenies of Malus sieversii f.neidzwetzkyana and M. domestica cv. Fuji was studied. 【Method】 Four apple stains (Zihong NO.2, Hongcui NO.1, Hongcui NO.2 and Hongcui NO.4) with significant difference in red-flesh degree during the latter growth period were used as materials. The type of MYB10 promoter was identified, and the components and contents of flavonoids and the relative expressions of related genes were determined.【Result】The type of MYB10 promoter in Hongcui NO.1, Hongcui NO.2, and Hongcui NO.4 was R6R1, and that of Zihong NO.2 was R6R6. The contents of flavonoids in the mature period between Hongcui NO.1 (3.0 mg.g-1) and Zihong NO.2 (3.1 mg·g-1) were equivalent, while the anthocyanin content in Zihong NO.2 (23.9 U·g-1 FW) was twice as that in Hongcui NO.1 (12.2 U·g-1FW), and other contents of flavonoid of anthocyanin in Zihong NO.2 (1 635.3 mg·kg-1) was only 69% of that in Hongcui NO.1 (2 355.0 mg·kg-1). The transcription factors and anthocyanin biosynthesis genes such as MYB10 and UFGT in Zihong NO.2 had higher expression during the latter growth period (110-125 d). The expression of MYB10 in Hongcui NO.4 during the latter growth period (110-125 d) was higher, but the expression of bHLH3, TTG1, ANS and UFGT were lower. The contents of flavonoid components among Hongcui NO.1 (2 355.0 mg·kg-1), Hongcui NO.2 (1 247.5 mg·kg-1) and Hongcui NO.4 (1 337.5 mg·kg-1) indicated significant differences. In Hongcui NO.1, the MYB12, FLS, LAR and ANR showed higher expression, while the expression of MYB16 and MYB111 were lower. The MYB12, FLS, LAR and ANR in Hongcui NO.2 and Hongcui NO.4 showed lower expression, while the expression of MYB16 and MYB111 were higher.【Conclusion】The transcription factors, such as MYB10, BHLH3, TTG1, and the structure genes which were associated with anthocyanin biosynthesis including ANS, UFGT were obviously up-regulated during the latter growth period, and it might be the main reason that caused high anthocyanin content in Zihong NO.2 flesh in the mature period. Meanwhile, the transcription factors, for example, MYB12, MYB16, MYB111, and the structure genes that relative to flavonoid biosynthesis such as DFR, FLS, LAR, ANR had different expressions, and it might be the main reason that led to the difference in the components and contents of flavonoid among the 3 strains of Hongcui NO.1, Hongcui NO.2 and Hongcui NO.4.

Key words: M.sieversii f. neidzwetzkyana, cross progeny, flavonoid, MYB10, gene expression analysis

[1]    陈学森, 韩明玉, 苏桂林, 刘凤之, 过国南, 姜远茂, 毛志泉, 彭福田, 束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604.
Chen X S, Han M Y, Su G L, Liu F Z, Guo G N, Jiang Y M, Mao Z Q, Peng F T, Shu H R. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese)
[2]    陈学森, 郭文武, 徐娟, 丛佩华, 王力荣, 刘崇怀, 李秀根, 吴树敬, 姚玉新, 陈晓流. 主要果树果实品质遗传改良与提升实践. 中国农业科学, 2015, 48(17): 3524-3540.
Chen X S, Guo W W, Xu J, Cong P H, Wang L R, Liu C H, Li X G, Wu S J, Yao Y X, ChenX L. Genetic improvement and promotion of fruit quality of main fruit trees. Scientia Agricultura Sinica, 2015, 48(17): 3524-3540. (in Chinese)
[3]    Vrhovsek U, Rigo A, Tonon D, Mattivi F. Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry, 2004, 52(21): 6532-6538.
[4]   陈学森, 张晶, 刘大亮, 冀晓昊, 张宗营, 张芮, 毛志泉, 张艳敏, 王立霞, 李敏. 新疆红肉苹果杂种一代的遗传变异及功能型苹果优株评价. 中国农业科学, 2014, 47(11): 2193-2204.
Chen X S, Zhang J, Liu Da L, Ji X H, Zhang Z Y, Zhang R, Mao Z Q, Zhang Y M, Wang L X, Li M. 2014. Genetic variation of F1 population between Malus sieversii f. neidzwetzkyana and apple varieties and evaluation on fruit characters of functional apple excellent strains. Scientia Agricultura Sinica, 2014, 47(11): 2193-2204. (in chinese)
[5]    聂继云, 吕德国, 李静, 刘凤之, 李萍.苹果果实中类黄酮化合物的研究进展. 园艺学报, 2009, 36(9): 1390-1397.
Nie J Y, LÜ D G , Li J, Liu F Z, Li P. Advances in studies on flavonoids in apple fruit. Acta Horticulturae Sinica, 2009, 36(9): 1390-1397. (in chinese)
[6]    Chikako H, Nobuhiro K, Masato W, Satoru K, Shozo K, Junichi S, Zilian Z, Tomomi T, Takaya M. Anthocyanin biosynthetic gene are coordinately expressed during red coloration in apple skin. Plant Physiology and Biochemistry, 2002, 40: 955-962.
[7]    Takos A M, Jaffé F W, Jacob S R, Bogs J, Robinson S P, Walker A R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006, 142(3): 1216-1232.
[8]    Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant and Cell Physiology, 2007, 48: 958-970.
[9]    Sekido K, Yamada K, Shiratake K, Fukui H, Matsumoto S. MdMYB alleles responsible for apple skin and flesh color. Current Topics in Plant Biology, 2010, 11: 17-21.
[10]   Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. The Plant Journal, 2007, 49: 414-427.
[11]   Xie X B, Li S, Zhang R F, Zhao J, Chen Y C, Zhao Q, Yao Y X, You C X, Zhang X S, Hao Y J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apple. Plant, Cell and Environment, 2012, 35: 1884-1897.
[12]   An X H, Tian Y, Chen K Q, Wang X F, Hao Y J. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology, 2012, 169(7): 710-717.
[13]   Telias A, Lin-Wang K, Stevenson D E, Cooney J M, Hellens R P, Allan A C, Hoover E E, Bradeen J M. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11: 93.
[14]   Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell, 2009, 21: 168-183.
[15]   Chagné D,Lin-Wang K,Espley R V,Volz R K,How N M,Rouse S,Brendolise C,Carlisle C M,Kumar S, de SilvaN,Micheletti D, Ghie T, rowhurst R N, torey D, lasco R, ens R P, iner S E. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology, 2013, 161: 225-239.
[16]   Umemura H, Otagaki S, Wada M, Kondo S, Matsumoto S. Expression and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red flesh, not skin colorin apple fruit. Planta, 2013, 238: 65-76.
[17]   Nocker S V, Berry G, Najdowski J, Michelutti R, Luffman M, Forsline P, Alsmairat N, Beaudry R, Nair M G, Ordidge M. Genetic diversity of red-fleshed apples (Malus). Euphytica, 2012, 185: 281-293.
[18]   Chen X S, Feng T, Zhang Y M, He T M, Feng J R, Zhang C Y. Genetic diversity of volatile components in Xinjiang wild apple (Malus sieversii). Journal of Genetic and Genomics, 2007, 34(2): 171-179.
[19]   冯涛, 张艳敏, 陈学森. 新疆野苹果居群年龄结构及郁闭度研究. 果树学报, 2007, 24(5): 571-573.
Feng T, Zhang Y M, Chen X S. Study on the age structure and density of the wild apple forest of Malus sieversii. Journal of Fruit Science, 2007, 24(5): 571-573. (in Chinese)
[20]   张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红. 新疆野苹果酚类物质组分的遗传多样性. 园艺学报, 2008, 35(9): 1351-1356. 
Zhang X Y, Chen X S, Peng Y, Wang H B, Shi J, Zhang H. Genetic diversity of phenolic compounds in Malus sieversii. Acta Horticulturae Sinica, 2008, 35(9): 1351-1356. (in Chinese)
[21]   张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红. 新疆野苹果矿质元素与糖酸组分的遗传多样性. 园艺学报, 2008, 35(2): 277-280.
Zhang X Y, Chen X S, Peng Y, Wang H B, Shi J, Zhang H. Genetic diversity of mineral elements, sugar and acid components in Malus sieversii (Ldb.) Roem. Acta Horticulturae Sinica, 2008, 35(2): 277-280. (in Chinese)
[22]   Zhang C Y, Chen X S, He T M, Liu X L, Feng T, Yuan Z H. Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 2007, 34(10): 947-955.
[23]   张艳敏, 冯涛, 张春雨, 何天明, 张小燕, 吴传金, 刘遵春, 王艳玲, 束怀瑞, 陈学森. 新疆野苹果研究进展. 园艺学报, 2009, 36(3): 447-452.
Zhang Y M, Feng T, Zhang C Y, He T M, Zhang X Y, Wu C J, Liu Z C, Wang Y L, Shu H R, Chen X S. Advances in research of the Malus sieversii (Lebed.) Roem. Acta Horticulturae Sinica, 2009, 36(3): 447-452. (in Chinese)
[24]   冯涛, 张红, 陈学森, 张艳敏, 何天明, 冯建荣, 许正. 新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株. 植物遗传资源学报, 2006, 7(3): 270-276.
Feng T, Zhang H, Chen X S, Zhang Y M, He T M, Feng J R, Xu Z. Genetic diversity of fruit morphological traits and content of mineral element in Malus sieversii (Ldb.) Roem and its elite seedlings. Journal of Plant Genetic Resources, 2006, 7(3): 270-276. (in Chinese)
[25]   王延玲, 张艳敏, 冯守千, 宋杨, 徐玉亭, 张友朋, 陈学森. 新疆红肉苹果果皮果肉呈色差异机理. 中国农业科学, 2012, 45(13): 2771-2778.
Wang Y L, Zhang Y M, Feng S Q, Song Y, Xu Y T, Zhang Y P, Chen X S. The mechanism of red coloring difference between skin and cortex in Malus sieversii f. neidzwetzkyana (Dieck) Langenf. Scientia Agricultura Sinica, 2012, 45(13): 2771-2778. (in Chinese)
[26]   张芮, 张宗营, 高利平, 冀晓昊, 毛志泉, 许海峰, 王楠, 吴树敬, 陈学森. 苹果绵肉与脆肉株系果实质地差异的分子机理. 中国农业科学, 2015, 48(18): 3676-3688.
Zhang R, Zhang Z Y, Gao L P, Ji X H, Mao Z Q, Xu H F, Wang N, Wu S J, Chen X S. Study on the molecular mechanism controlling differences in fruit texture formation of apple soft/crisp strains. Scientia Agricultura Sinica, 2015, 48(18): 3676-3688. (in Chinese)
[27]   Ji X H , Wang Y T , Zhang R, Wu S J , An M M, Li M, Wang C Z , Chen X L , Zhang Y M , Chen X S. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2015, 120: 325-337.
[28]   Ji X H, Zhang R, Wang N, Yang L, Chen X S. Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f. niedzwetzkyana). Cell, Tissue and Organ Culture, 2015, 123: 389-404.
[29]   Wang N, Zheng Y, Duan N B, Zhang Z Y, Ji X H, Jiang S H, Sun S S, Yang L, Bai Y, Fei Z J, Chen X S.Comparative transcriptomes analysis of red and white-fleshed apples in an F1 populationof Malus sieversii f. niedzwetzkyana crossed with M. domestica ‘Fuji’. PLoS One, DOI:10.1371/journal.pone.0133468, July 24, 2015.
[30]   Christian G, Heidi H, Jasmin K, Silvija M, Karl S. Biosynthesis of phloridzin in apple (Malus domestica Borkh). Plant Science, 2009, 6: 223-231.
[31]   Iris S, Henryk F, Li H H, Heidrun H, Dieter T, Ionela R, Hanke M V, Karl S, Thilo C F. Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp). Planta, 2009, 229: 681-692.
[32]   Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947-2948.
[33]   冯守千, 陈学森, 张春雨, 刘晓静, 刘遵春, 王海波, 王延玲, 周朝华. 砂梨品种‘满天红’及其芽变品系‘奥冠’花青苷合成与相关酶活性研究. 中国农业科学, 2008, 41(10): 3184-3190.
Feng S Q, Chen X S, Zhang C Y, Liu X J, Liu Z C, Wang H B, Wang Y L, Zhou Z H. A Study of the relationship between anthocyanin biosynthesis and related enzymes activity in Pyrus pyrifolia ‘Mantianhong’ and its bud sports ‘Aoguan’. Scientia Agricultura Sinica, 2008, 41(10): 3184-3190. (in Chinese)
[34]   Jia Z S, Tang M C, Wu J M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999, 64(4): 555-559.
[35]   Longo L, Scardino A, Vasapollo G. Identification and quantification of anthocyanin in the berries of Pistacia lentiscus L. Phillyrea latifolia L. and Rubia peregrina L. Innovative Food Science &Emerging Technologies, 2007, 8: 360-364.
[36]   Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25: 402-408.
[37]   Xu Y T, Feng S Q, Jiao Q Q, Liu C C, Zhang W W, Chen W Y, Chen X S. Comparison of MdMYB1 sequences and expression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar ‘Ralls’ and its blushed sport. Euphytica, 2012, 185: 157-170.
[38]   周兰. 苹果果实发育中类黄酮含量变化及相关基因的研究[D]. 北京: 中国农业科学院, 2013.
Zhou L. Study on the concentration changes and related genes of flavonoids in apple [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[39]   Koes R, Verweij W, Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10(5): 236-242.
[40]   Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 2011, 181(3): 219-229.
[41]   刘晓芬, 李方, 殷学仁, 徐昌杰, 陈昆松. 花青苷生物合成转录调控研究进展. 园艺学报, 2013, 40(11): 2295-2306.
Liu X F, Li F, Yin X R, Xu C J, Chen K S. Recent advances in the transcriptional regulation of anthocyanin biodynthesis. Acta Horticulturae Sinica, 2013, 40(11): 2295-2306. (in Chinese)
[42]   Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013,18(9): 477-483.
[43]   Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimicaet Biophysica Acta-Gene Regulatory Mechanisms, 2013, 1829(11): 1236-1247.
[44]   Kim S Y, Lee J R, Kim S R. Characterization of an apple anthocyanidin synthase gene in transgenic tobacco plants. Journal of Plant Biology, 2006, 49(4): 326-330.
[45]   Kondo S, Hiraoka K, Kobayashi S, Honda C, Terahara N. Changes in the expression of anthocyanin biosynthetic genes during apple development. Journal of the American Society for Horticultural Science, 2002, 127: 971-976.
[46]   Brueggemann J, Weisshaar B, Sagasser M. A WD40- repeat gene from Malus×domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Reports, 2010, 29(3): 285-294.
[47]   StevenV N, Garrett B, James N, Roberto M, Margie L, Philip F, Nihad A, Randy B, Nair M G, Matthew O. Genetic diversity of red-fleshed apples (Malus). Euphytica, 2012, 185: 281-293
[48]   聂继云, 吕德国, 李静, 刘凤之, 李海飞, 王昆. 22种苹果种质资源果实类黄酮分析. 中国农业科学, 2010, 43(21): 4455-4462.
Nie J Y, LÜ D G, Li J, Liu F Z, Li H F, Wang K. A preliminary study on the flavonoids in fruits of 22 apple germplasm resources. Scientia Agricultura Sinica, 2010, 43(21): 4455-4462. (in Chinese)
[49]   Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R V, Hellens R P, ChagnÈ D, Rowan D D, Troggio M, Iglesia I, Allen A C. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell and Environment, 2011, 34: 1176-1190.
[50]   An X H, Tian Y, Chen K Q, Liu X J, Liu D D, Xie X B, Cheng C G, Cong P H, Hao Y J. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiology, 2015, 56(4): 650-662.
[51]   Han Y P, Vimolmangkang S, Soria-Guerra R E, Korban S S. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany, 2012, 63(7): 2437-2447.
[1] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[2] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[3] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[4] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[5] MuKang LUO,XuChao JIA,RuiFen ZHANG,Lei LIU,LiHong DONG,JianWei CHI,YaJuan BAI,MingWei ZHANG. Phenolic Content, Bioavailability and Antioxidant Activity of Carambola [J]. Scientia Agricultura Sinica, 2020, 53(7): 1459-1472.
[6] ShaoKang DI,QingGang YIN,YaYing XIA,YongZhen PANG. Functional Characterization of a UDP: Flavonoid Glycosyltransferase Gene UGT73C19 in Glycine max [J]. Scientia Agricultura Sinica, 2019, 52(20): 3507-3519.
[7] YANG XiaoMeng, DU Juan, ZENG YaWen, PU XiaoYing, YANG ShuMing, YANG Tao, WANG LuXiang, YANG I JiaZhen. QTL Mapping of Protein and Related Functional Components Content in Barley Grains [J]. Scientia Agricultura Sinica, 2017, 50(2): 205-215.
[8] LU JuanFang, LIU ShengYu, LU Wang, XI WanPeng. Phenolic Profiles and Antioxidant Activity of Fruit Pulp from Different Types of Peaches [J]. Scientia Agricultura Sinica, 2017, 50(16): 3205-3214.
[9] LAI Ting, LIU Lei, ZHANG Ming-wei, ZHANG Rui-fen, ZHANG Yan, WEI Zhen-cheng, DENG Yuan-yuan. Effect of Lactic Acid Bacteria Fermentation on Phenolic Profiles and Antioxidant Activity of Dried Longan Flesh [J]. Scientia Agricultura Sinica, 2016, 49(10): 1979-1989.
[10] ZHANG Gui-wei, ZHANG Qiu-yun, JIANG Dong, XI Wan-peng, ZHOU Zhi-qin. Phenolic Composition and Antioxidant Activities of Grapefruit Varieties Cultivated in China [J]. Scientia Agricultura Sinica, 2015, 48(9): 1785-1794.
[11] ZHANG Rui, ZHANG Zong-ying, GAO Li-ping, JI Xiao-hao, MAO Zhi-quan, XU Hai-feng, WANG Nan, WU Shu-jing, CHEN Xue-sen. Study on the Molecular Mechanism Controlling Differences in Fruit Texture Formation of Apple Soft/Crisp Strains [J]. Scientia Agricultura Sinica, 2015, 48(18): 3676-3688.
[12] ZHANG Ling, XU Zong-da, TANG Teng-fei, ZHANG Hui, ZHAO Lan-yong. Analysis of Anthocyanins Related Compounds and Their Biosynthesis Pathways in Rosa rugosa ‘Zi zhi’ at Blooming Stages [J]. Scientia Agricultura Sinica, 2015, 48(13): 2600-2611.
[13] ZHENG Jie, ZHAO Qi-yang, ZHANG Yao-hai, JIAO Bi-ning. Simultaneous Determination of Main Flavonoids and Phenolic Acids in Citrus Fruit by Ultra Performance Liquid Chromatography [J]. Scientia Agricultura Sinica, 2014, 47(23): 4706-4717.
[14] LI Jun, ZHAO Ai-chun, UMUHOZA Diane, WANG Xi-ling, LIU Chang-ying, LU Cheng, YU Mao-de. Cloning and Function Analysis of a MaDFR Gene from Mulberry [J]. Scientia Agricultura Sinica, 2014, 47(22): 4524-4532.
[15] SU Dong-Xiao-1, 2 , ZHANG Rui-Fen-1, ZHANG Ming-Wei-1, HUANG Fei-1, 2 , WEI Zhen-Cheng-1, ZHANG Yan-1, TI Hui-Hui-1, DENG Yuan-Yuan-1, TANG Xiao-Jun-1. Separation and Purification of Polyphenol in Litchi Pulp by Macroporous Resin [J]. Scientia Agricultura Sinica, 2014, 47(14): 2897-2906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!