Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (18): 3676-3688.doi: 10.3864/j.issn.0578-1752.2015.18.011

• HORTICULTURE • Previous Articles     Next Articles

Study on the Molecular Mechanism Controlling Differences in Fruit Texture Formation of Apple Soft/Crisp Strains

ZHANG Rui, ZHANG Zong-ying, GAO Li-ping, JI Xiao-hao, MAO Zhi-quan, XU Hai-feng, WANG Nan, WU Shu-jing, CHEN Xue-sen   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2015-03-23 Online:2015-09-16 Published:2015-09-16

Abstract: 【Objective】In order to perfect the breeding theory and technology system of functional apple, the molecular mechanism controlling differences in fruit texture formation of soft/crisp strains from the cross progenies of ‘Fuji’ and M. sieversii f. neidzwetzkyana was studied. 【Method】The ethylene production, fruit firmness, crispness, the relative expression intensity of 4 genes related to ethylene biosynthesis (ACS1 etc.) and 30 genes related to fruit softening (PG) were detected in fruits of different development stages of two cross progenies of ‘Fuji’ and M. sieversii f. neidzwetzkyana (‘Hongmian2’ and ‘Hongcui2’). 【Result】Fruit firmness and crispness both declined during development period in both ‘Hongmian2’ and ‘Hongcui2’, but fruit firmness and crispness of ‘Hongcui2’ was significantly higher than that in ‘Hongmian2’ all the time. The ethylene production of ‘Hongmian2’ increased at DAFB 120 d and presented a peak of ethylene production, while the ethylene production of ‘Hongcui2’ didn’t increase significantly at DAFB 120 d and had no obvious peak. The expression patterns of 4 ethylene biosynthesis genes were different. The expression of ACS1, ACO1 and ACO2 in ‘Hongmian2’ during late development period weighed over 94%, while ACS3a showed constitutive expression, occupying 50% of total expression during early and late development period, respectively. The expression periods of 30 genes related to fruit softening were different. With over 70% of the total expression, 15 genes (PL, AF1, EG2 and XET1 etc.) and 5 genes (PG, AF3, XET2, XET10 and XET11) mainly expressed during early development and late development period, respectively. Except 6 genes (PL, AF1 etc.), the expression of other 24 genes (PG etc.) in ‘Hongcui2’ was significantly lower than that in ‘Hongmian2’. 【Conclusion】The appearance of ethylene production peak during late development period and the up-regulated expression of genes related to ethylene biosynthesis and fruit softening during early and late development period resulted in the softening of ‘Hongmian2’ before harvest and the texture difference between ‘Hongmian2’ and ‘Hongcui2’.

Key words: M. sieversii f. neidzwetzkyana, cross progeny, soft/crisp strain, fruit texture difference, molecular mechanism

[1]    苏宁, 万向元, 翟虎渠, 万建民. 功能型水稻研究现状和发展趋向. 中国农业科学, 2007, 40(3): 433-439.
Su N, Wan X Y, Zhai H Q, Wan J M. Progress and prospect of functional rice researches. Scientia Agricultura Sinica, 2007, 40(3): 433-439. (in Chinese)
[2]    Boyer J, Liu R H. Apple phytochemicals and their health benefits. Nutrition Journal, 2004, 3: 5.
[3]    陈学森, 韩明玉, 苏桂林, 刘凤之, 过国南, 姜远茂, 毛志泉, 彭福田, 束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见. 果树学报, 2010, 27(4): 598-604.
Chen X S, Han M Y, Su G L, Liu F Z, Guo G N, Jiang Y M, Mao Z Q, Peng F T, Shu H R. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese)
[4]   陈学森, 张晶, 刘大亮, 冀晓昊, 张宗营, 张芮, 毛志泉, 张艳敏, 王立霞, 李敏. 新疆红肉苹果杂种一代的遗传变异及功能型苹果优株评价. 中国农业科学, 2014, 47(11): 2193-2204.
Chen X S, Zhang J, Liu D L, Ji X H, Zhang Z Y, Zhang R, Mao Z Q, Zhang Y M, Wang L X, Li M. Genetic variation of F1 population between Malus sieversii f. neidzwetzkyana and apple varieties and evaluation on fruit characters of functional apple excellent strains. Scientia Agricultura Sinica, 2014, 47(11): 2193-2204. (in Chinese)
[5]    王立霞, 冀晓昊, 安萌萌, 张宗营, 王艳廷, 王传增, 吴玉森, 吴树敬, 陈学森. 几个功能型苹果优株果实风味品质评价. 果树学报, 2014, 31(5): 753-759.
Wang L X, Ji X H, An M M, Zhang Z Z, Wang Y T, Wang C Z, Wu Y S, Wu S J, Chen X S. The flavor quality evaluation of several selected functional apples. Journal of Fruit Science, 2014, 31(5): 753-759. (in Chinese)
[6]    陈学森, 宋君, 高利平, 冀晓昊, 张宗营, 毛志泉, 张艳敏, 刘大亮, 张芮, 李敏. ‘乔纳金’苹果及其脆肉芽变果实质地发育机理. 中国农业科学, 2014, 47(4): 727-735.
Chen X S, Song J, Gao L P, Ji X H, Zhang Z Y, Mao Z Q, Zhang Y M, Liu D L, Zhang R, Li M. Developing mechanism of fruits texture in ‘Jona gold’ apple and its crisp flesh sport. Scientia Agricultura Sinica, 2014, 47(4): 727-735. (in Chinese)
[7]    King G J, Maliepaard C, Lynn J R, Alston F H, Durel C E, Evans K M, Griffon B, Laurens F, Manganaris A G, Schrevens E, Tartarini S, Verhaegh J. Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theoretical and Applied Genetics, 2000, 100(7): 1074-1084.
[8]    King G J, Lynn J R, Dover C J, Evans K M, Seymour G B. Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theoretical and Applied Genetics, 2001, 102(8): 1227-1235.
[9]    Kenis K, Keulemans J, Davey M W. Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics & Genomes, 2008, 4(4): 647-661.
[10]   Soglio V, Costa F, Molthoff J W, Weemen-Hendriks W M J, Schouten H J, Gianfranceschi L. Transcription analysis of apple fruit development using cDNA microarrays. Tree Genetics & Genomes, 2009, 5(4): 685-698.
[11]   Costa F, Van de Weg W E, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S. Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus domestica Borkh.) and pear (Pyrus communis). Tree Genetics & Genomes, 2008, 4(3): 575-586.
[12]   Janssen B J,Thodey K,Schaffer R J,Alba R,Balakrishnan L,Bishop R,Bowen J H,Crowhurst R N,Gleave A P,Ledger S,McArtney S,Pichler F B,Snowden K C,Ward S. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology, 2008, 8(2): 16.
[13]   魏建梅. 苹果(Malus domestica Borkh.)果实质地品质发育及采后调控的生理和分子基础[D]. 杨凌: 西北农林科技大学, 2009.
Wei J M. Study on physiological and molecular mechanism of fruit texture development and post-harvest regulation of apple (Malus domestica Borkh.) [D]. Yangling: Northwest Agricultural and Forest University, 2009. (in Chinese)
[14]   刘超超, 魏景利, 徐玉亭, 焦其庆, 孙海兵, 王传增, 陈学森. 苹果3个早熟品种果实发育后期硬度及其相关生理指标的初步研究. 园艺学报, 2011, 38(1): 133-138.
Liu C C, Wei J L, Xu Y T, Jiao Q Q, Sun H B, Wang C Z, Chen X S. Preliminary study on firmness and related physiological indices of three early-ripening apple cultivar during late development of fruit. Acta Horticulturae Sinica, 2011, 38(1): 133-138. (in Chinese)
[15]   刘美艳, 魏景利, 刘金, 房龙, 宋杨, 崔美, 王传增, 陈学森. ‘泰山早霞苹果采后1-甲基环丙烯处理对其软化及相关基因表达的影响. 园艺学报, 2012, 39(5): 845-852.
Liu M Y, Wei J L, Liu J, Fang L, Song Y, Cui M, Wang C Z, Chen X S. The regulation of 1-methylcyclopropene on softening and expression of relevant genes in ‘Tai shan Zao xia’ apple. Acta Horticulturae Sinica, 2012, 39(5): 845-852. (in Chinese)
[16]   Jovyn KT N, Roswitha S, Paul W S, Hallett L C, Miriam I H, Roneel  P, Bronwen G S, Laurence D M, Jason W J. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus×domestica) fruit growth. BMC Plant Biology, 2013, 13: 183.
[17]   Nocker S V, Berry G, Najdowski J, Michelutti R, Luffman M, Forsline P, Alsmairat N, Beaudry R, Nair M G, Ordidge M. Genetic diversity of red-fleshed apples (Malus). Euphytica, 2012, 185(2): 281-293.
[18]   Chen X S, Feng T, Zhang Y M, He T M, Feng J R, Zhang C Y. Genetic diversity of volatile components in Xinjiang wild apple (Malus sieversii). Journal of Genetic and Genomics, 2007, 34(2): 171-179.
[19]   冯涛, 张艳敏, 陈学森. 新疆野苹果居群年龄结构及郁闭度研究. 果树学报, 2007, 24(5): 571-573.
Feng T, Zhang Y M, Chen X S. Study on the age structure and density of the wild apple forest of Malus sieversii. Journal of Fruit Science, 2007, 24(5): 571-573. (in Chinese)
[20]   张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红. 新疆野苹果多酚物质的遗传多样性. 园艺学报, 2008, 35(9): 1351-1356. 
Zhang X Y, Chen X S, Peng Y, Wang H B, Shi J, Zhang H. Genetic diversity of phenolic compounds in Malussieversii. Acta Horticulturae Sinica, 2008, 35(9): 1351-1356. (in Chinese)
[21]   张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红. 新疆野苹果矿质元素与糖酸组分的遗传多样性. 园艺学报, 2008, 35(2): 277-280.
Zhang X Y, Chen X S, Peng Y, Wang H B, Shi J, Zhang H. Genetic diversity of mineral elements, sugar and acid components in Malusieversii (Ldb.) Roem. Acta Horticulturae Sinica, 2008, 35(2): 277-280. (in Chinese)
[22]   Zhang C Y, Chen X S, He T M, Liu X L, Feng T, Yuan Z H. Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 2007, 34(10): 947-955.
[23]   张艳敏, 冯涛, 张春雨, 何天明, 张小燕, 吴传金, 刘遵春, 王艳玲, 束怀瑞, 陈学森. 新疆野苹果研究进展. 园艺学报, 2009, 36(3): 447-452.
Zhang Y M, Feng T, Zhang C Y, He T M, Zhang X Y, Wu C J, Liu Z C, Wang Y L, Shu H R, Chen X S. Advances in research of the Malus sieversii (Ldb.) Roem. Acta Horticulturae Sinica, 2009, 36(3): 447-452. (in Chinese)
[24]   冯涛, 张红, 陈学森, 张艳敏, 何天明, 冯建荣, 许正. 新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株. 植物遗传资源学报, 2006, 7(3): 270-276.
Feng T, Zhang H, Chen X S, Zhang Y M, He T M, Feng J R, Xu     Z. Genetic diversity of fruit morphological traits and content of mineral element in Malus sieversii (Ldb.) Roem. and its elite seedlings. Journal of Plant Genetic Resources, 2006, 7(3): 270-276. (in Chinese)
[25]   王延玲, 张艳敏, 冯守千, 宋杨, 徐玉亭, 张友朋, 陈学森. 新疆红肉苹果果皮果肉呈色差异机理. 中国农业科学, 2012, 45(13): 2771-2778.
Wang Y L, Zhang Y M, Feng S Q, Song Y, Xu Y T, Zhang Y P, Chen X S. The mechanism of red coloring difference between skin and cortex in Malus sieversii f. neidzwetzkyana (Dieck) Langenf. Scientia Agricultura Sinica, 2012, 45(13): 2771-2778. (in Chinese)
[26]   高利平, 冀晓昊, 张艳敏, 宋君, 李敏, 刘大亮, 张芮, 陈学森. 新疆红肉苹果杂交后代绵/脆肉株系果实质地差异相关酶活性的初步研究. 园艺学报, 2013, 40(6): 1153-1161.
Gao L P, Ji X H, Zhang Y M, Song J, Li M, Liu D L, Zhang R, Chen X S. The preliminary study on the enzymes activity related to fruit texture of the fruit of soft/crisp strains from the cross progenies of ‘Fuji’ and Malus sieversii. Acta Horticulturae Sinica, 2013, 40(6): 1153-1161. ( in Chinese)
[27]   Camps C, Guillermin P, Mauget J C, Bertrand D. Data analysis     of penetrometric force/displacement curves for the characterization  of whole apple fruits. Journal of Texture Studies, 2005, 36(4): 387-401.
[28]   刘金, 魏景立, 刘美艳, 宋杨, 冯守千, 王传增, 陈学森. 早熟苹果花青苷积累与其相关酶活性及乙烯生成之间的关系. 园艺学报, 2012, 39(7): 1235-1241.
Liu J, Wei J L, Liu M Y, Song Y, Feng S Q, Wang C Z, Chen X S. The activity of anthocyanin biosynthesis, ethylene release and anthocyanin accumulation in fruits of precocious apple cultivars. Acta Horticulturae Sinica, 2012, 39(7): 1235-1241. (in Chinese)
[29]   Chang S, Puryear J, Cairney J. A simple and sufficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 1993, 11(2): 113-116.
[30]   Livak J, Schmitten T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25(4): 402-408.
[31]   Li M, Zhang Y M, Zhang Z Y, Ji X H, Zhang R, Liu D L, Gao L P, Zhang J, Wang B, Wu Y S, Wu S J, Chen X L, Feng S Q, Chen X S. Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence. Plos One, 2013, 8(3): e58745.
[32]   Atkinson R G, Johnston S L, Yauk Y K, Sharma N N, Schröder R. Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology, 2009, 51(2): 149-157.
[33]   Muñoz-Bertomeu J, Miedes E, Lorences E P. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. Journal of Plant Physiology, 2013, 170(13): 1194-1201.
[34]   李通, 张志宏, 王爱德. 苹果果实成熟过程中ACC合成酶基因作用机理研究进展. 园艺学报, 2012, 39(9): 1665-1672.
Li T, Zhang Z H, Wang A D. The role of 1-aminocyclopropane-1- carboxylate synthase genes in apple fruit ripening. Acta Horticulturae Sinica, 2012, 39(9): 1665-1672. (in Chinese)
[35]   Wang A, Tan D, Tatsuki M, Kasai A, Li T, Saito H, Harada T. Molecular mechanism of distinct ripening profiles in‘Fuji’apple fruit and its early maturing sports. Postharvest Biology and Technology, 2009, 52(1): 38-43.
[36]   Wang A, Yamakake J, Kudo H, Wakasa Y, Hatsuyama Y, Igarashi M, Kasa i A, Li T, Harada T. Null mutation of the MdACS3 gene coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase leads to long shelf life in apple fruit. Plant Physiology, 2009, 151(1): 391-399.
[37]   Tan D, Li T, Wang A. Apple 1-Aminocyclopropane-1-carboxylic acid synthase genes, MdACS1 and MdACS3a, are expressed in different systems of ethylene biosynthesis. Plant Molecular Biology Reporter, 2013, 31(1): 204-209.
[38]   田世平. 果实成熟和衰老的分子调控机制. 植物学报, 2013, 48(5): 481-488.
Tian S P. Molecular mechanisms of fruit ripening and senescence. Chinese Bulletin of Botany, 2013, 48(5): 481-488. (in Chinese)
[1] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
[2] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[3] LI JiaJia, ZHENG ShuangYu, SUN GenLou, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Advances and Perspectives in Research of Physiological and Molecular Mechanism of Soybean Response to High Temperature Stress [J]. Scientia Agricultura Sinica, 2017, 50(14): 2670-2682.
[4] XU Hai-feng, WANG Nan, JIANG Sheng-hui, WANG Yi-cheng, LIU Jing-xuan, QU Chang-zhi, WANG De-yun, ZUO Wei-fang, ZHANG Jing, JI Xiao-hao, ZHANG Zong-ying, MAO Zhi-quan, CHEN Xue-sen. Content and Analysis of Biosynthesis-Related Genes of Flavonoid Among Four Strains of Malus sieversii f. neidzwetzkyana F1 Population [J]. Scientia Agricultura Sinica, 2016, 49(16): 3174-3187.
[5] SUN Yu-yan, LI Xi-xiang. A Review on Molecular Mechanism of the Modified Roots or Stems Development in Vegetables [J]. Scientia Agricultura Sinica, 2015, 48(6): 1162-1176.
[6] QI Nan-nan, ZHANG Xiao-yan, SU Na-na, WU Qi, GENG Dian-xiang, QI Xue-hui, WEI Sheng-jun, CUI Jin. The Molecular Mechanism of UV-A Induced Anthocyanin Accumulation in the Hypocotyls of Soybean Sprouts [J]. Scientia Agricultura Sinica, 2015, 48(12): 2408-2416.
[7] ZHAN Jia-sui;WU E-jiao; LIU Xi-li; CHEN Feng-ping;. Molecular Basis of Resistance of Phytopathogenic Fungi to Several Site-Specific Fungicides [J]. Scientia Agricultura Sinica, 2014, 47(17): 3392-3404.
[8] GUO Bao-Jian, SUI Zhi-Peng, LI Yang-Yang, FENG Wan-Jun, YAN Wen-Wen, LI Hui-Min, SUN Qi-Xin, NI Zhong-Fu. Differentially Expressed Protein Profile of Maize Seedling Leaves Between Hybrid and Its Parental Lines [J]. Scientia Agricultura Sinica, 2013, 46(14): 3046-3054.
[9] MA Yong,WU Jian-yong,XING Chao-zhu,GUO Li-ping,GONG Yang-cang,CUI Ming-hui,Wang Hai-lin
. Differentially Expressed Genes Between Cytoplasmic Male Sterility Lines and Maintainer Lines of Gossypium harknessii
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3706-3712 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!