Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (14): 2662-2674.doi: 10.3864/j.issn.0578-1752.2016.14.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of Strigolactones Biosynthesis- Related Gene ScCCD8 in Sugarcane

WU Zhuan-di, LIU Xin-long, LIU Jia-yong, ZAN Feng-gang, ZHAO Pei-fang, LIN Xiu-qin, CHEN Xue-kuan, SU Huo-sheng, LIU Hong-bo, WU Cai-wen   

  1. Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, Yunnan
  • Received:2016-03-16 Online:2016-07-16 Published:2016-07-16

Abstract: 【Objective】The gene of Carotenoid Cleavage Dioxygenase8 (CCD8) from sugarcane (Saccharum officinarum L.) was cloned, then the sequence signature and functions were investigated, furthermore the gene expression in different tissues, different abiotic stresses and different growth times were analyzed. The objectives of the present study were to provide theoretical supports for the application of the ScCCD8 gene in sugarcane genetic engineering breeding.【Method】Using homologous cloning method to obtain the sequence of ScCCD8 gene from ROC22, reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends PCR (RACE-PCR) were used to clone the full-length sequence of ScCCD8. The bioinformatic characteristics of the ScCCD8 was analyzed using online service. The expression profiles of ScCCD8 in various tissues, in response to different stress treatments and different growth times were investigated using quantitative real-time PCR (qRT-PCR). 【Result】CCD8 was isolated from sugarcane, named ScCCD8, which was submitted to GenBank with accession number KP742973.1. It has 2 016 bp in length containing a 1 623 bp open reading frame (ORF) and encoding 540 amino acid residues. The molecular weights of ScCCD8 encoding protein were 59.534 kD, it is not a transmembrane protein that did not contain the signal peptide sites, indicating that it is not the secretory protein. Subcellular localization prediction showed that ScCCD8 might localize in chloroplast, and it contains several active sites such as phosphorylation sites and glycosylation sites. Comparison of protein sequences similarity analysis showed that ScCCD8 had more similarity with CCD8 from different plants. Phylogenetic tree analysis showed that ScCCD8 had the closest genetic relationship with Sorghum bicolor. Expression quantity of ScCCD8 was the highest in root, which is 18 times more than in old leaves. Analysis of the expression patterns in response to abiotic stress revealed that ScCCD8 is up-regulated by PEG(20% PEG), NaCl(200 mmol·L-1 NaCl) and phosphorus deficiency (1/8 mmol·L-1)and nutritional deficiency(cultured in pure water) in stem tip, and the obviously increase expression was found after treated 24 hours. The expression of ScCCD8 in stem tip were various in different growth times, moreover the expression was higher in germination stage then in tillering stage.【Conclusion】Sugarcane strigolactones biosynthesis-related gene ScCCD8 was cloned from ROC22, which is the member of CCD8 gene family. It is speculated that ScCCD8 might participated in plant resistance to abiotic stresses.

Key words: sugarcane, carotenoid cleavage dioxygenase 8, strigolactones, qRT-PCR, drought stress

[1]    Klee H. Plant biology: Hormones branch out. Nature, 2008, 455(7210): 176-177.
[2]    Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pages V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Becard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210): 189-194.
[3]    Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195-200.
[4]    Lopez-Raez J A, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytology, 2008, 178(4): 863-874.
[5]    Hu Z, Yan H, Yang J, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiology, 2010, 51(7): 1136-1142.
[6]    Kapulnik Y, Delaux P M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Sejalon-Delmas N, Combier J P, Becard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 2011, 233(1): 209-216.
[7]    Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez J A, Matusova R, Bours R, Verstappen F, Bouwmeester H. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiology, 2011, 155(2): 721-734.
[8]    Brewer P B, Koltai H, Beveridge C A. Diverse roles of strigolactones in plant development. Molecular Plant, 2013, 6(1): 18-28.
[9]    Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. The Plant Journal, 2007, 51(6): 1019-1029.
[10]   Hayward A, Stirnberg P, Beveridge C, Leyser O. Interactions between auxin and strigolactone in shoot branching control. Plant Physiology, 2009, 151(1): 400-412.
[11]   Brewer P B, Dun E A, Ferguson B J, Rameau C, Beveridge C A. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 2009, 150(1): 482-493.
[12]   Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al Babili S. The path from beta-carotene to carlactone, a strigolactone- like plant hormone. Science, 2012, 335(6074): 1348-1351.
[13]   Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes & Development, 2003, 17(12): 1469-1474.
[14]   Harrison P J, Newgas S A, Descombes F, Shepherd S A, Thompson A J, Bugg T D. Biochemical characterization and selective inhibition of beta-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway. FEBS Journal, 2015, 282(20): 3986-4000.
[15]   Stirnberg P, Ward S, Leyser O. Auxin and strigolactones in shoot branching: intimately connected? Biochemical Society Transactions, 2010, 38(2): 717-722.
[16]   Mcsteen P, Zhao Y. Plant hormones and signaling: common themes and new developments. Developmental Cell, 2008, 14(4): 467-473.
[17]   Chen Z, Gao X, Zhang J. Alteration of osa-miR156e expression affects rice plant architecture and strigolactones (SLs) pathway. Plant Cell Reports, 2015, 34(5): 767-781.
[18]   Drummond R S, Sheehan H, Simons J L, Martinez- Sanchez N M, Turner R M, Putterill J, Snowden K C. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Frontiers in Plant Science, 2011, 2: 115.
[19]   Zhang Y, van Dijk A D, Scaffidi A, Flematti G R, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith S M, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H J. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature Chemical Biology, 2014, 10(12): 1028-1033.
[20]   Waters M T, Brewer P B, Bussell J D, Smith S M, Beveridge C A. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology, 2012, 159(3): 1073-1085.
[21]   Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. The Plant Cell, 2009, 21(5): 1512-1525.
[22]   Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. The Plant Journal, 2007, 51(6): 1019-1029.
[23]   Ledger S E, Janssen B J, Karunairetnam S, Wang T, Snowden K C. Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis). New Phytology, 2010, 188(3): 803-813.
[24]   Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P, Haider I, Pozo M J, de Maagd R A, Ruyter- Spira C, Bouwmeester H J, Lopez-Raez J A. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytology, 2012, 196(2): 535-547.
[25]   Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge C A. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. The Plant Cell, 2005, 17(2): 464-474.
[26]   Guan J C, Koch K E, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee H J, Mccarty D R. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 2012, 160(3): 1303-1317.
[27]   Liang J, Zhao L, Challis R, Leyser O. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). Journal of Experimental Botany, 2010, 61(11): 3069-3078.
[28]   Pasare S A, Ducreux L J, Morris W L, Campbell R, Sharma S K, Roumeliotis E, Kohlen W, van der Krol S, Bramley P M, Roberts A G, Fraser P D, Taylor M A. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytology, 2013, 198(4): 1108-1120.
[29]   Bainbridge K, Sorefan K, Ward S, Leyser O. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. The Plant Journal, 2005, 44(4): 569-580.
[30]   Al-Babili S, Bouwmeester H J. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 2015, 66: 161-186.
[31]   阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009(3): 274-278.
QUE Y X, XU L P, XU J S, ZHANG J S, ZHANG M Q, CHEN R K. Selection of control genes in Real-time qPCR analysis of gene expression in sugarcane. Chinese Journal of Tropical Crops, 2009(3): 274-278. (in Chinese)
[32]   Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, Zhu L. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. Journal of Integrative Plant Biology, 2010, 52(7): 626-638.
[33]   陈小娟. 生长素及独脚金内酯介导H2O2调控番茄侧枝生长发育的机制研究[D]. 杭州: 浙江大学, 2015.
CHEN X J. The mechanisms of auxin and strigolactone mediated hydrogen peroxide-contrlled lateral branching outgrowth in tomato plants[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[34]   王秀梅, 梁越洋, 李玲, 贡常委, 王海鹏, 黄晓西, 李双成, 邓其明, 朱军, 郑爱萍, 李平, 王世全. OsMAX1a,OsMAX1e通过参与独角金内酯的合成调控水稻分蘖. 中国水稻科学, 2015(3): 223-231.
wang x M, liang y y, li l, GONG c w, wang h P, HUANG X X, LI S C, deng q m, zhu j, zhenG a p, LI p, wang s q. OsMAX1a and OsMAX1e, involved in the biosynthesis of Strigolactones, regulate rice tilling. Chinese Journal of Rice Science, 2015(3): 223-231. (in Chinese)
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532.
[4] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[5] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,ZHU XiaoHui,ZENG Yan,PENG JiaYu,XIE RuLin,TAN HongWei,LI ZhongNing,SHEN XiaoWei,LIU XiHui. Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil [J]. Scientia Agricultura Sinica, 2021, 54(13): 2818-2829.
[6] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
[7] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[8] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[9] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[10] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[11] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[12] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[13] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[14] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[15] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!