Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (17): 3392-3404.doi: 10.3864/j.issn.0578-1752.2014.17.007

• PLANT PROTECTION • Previous Articles     Next Articles

Molecular Basis of Resistance of Phytopathogenic Fungi to Several Site-Specific Fungicides

ZHAN Jia-sui;WU E-jiao; LIU Xi-li; CHEN Feng-ping;   

  1. 1、Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002;
    2、Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002;
    3、Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193
  • Received:2014-03-03 Online:2014-09-01 Published:2014-04-25

Abstract: Site-specific fungicides play an important role in plant disease management. However, frequent applications of the fungicides over a large geographic scale can induce the emergence of resistant strains in the pathogen population. Resistance to fungicides with various modes of action has been documented in many plant fungal pathogens. This review summaries the current advances in understanding of the modes of action in five major classes of site-specific fungicides including methyl benzimidazole carbamate (MBCs), dicarboximide fungicides (DCFs), 14α-demethylase inhibitors (DMIs), quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs) and the molecular mechanisms of resistance. Evolutionary process of fungicide resistance and management programme aiming to mitigate the emergence of resistance are also discussed in the review. The target protein of MBCs is β-tubulin, and the resistance in phytopathogenic fungi is linked to point mutation in the target protein. Amino acid substitutions in target protein occur mainly at the positions 50, 167, 198, 200, and 240, and the most frequent mutation is amino acid 198. In general, only one substitution occurs in each resistant isolate. Resistant level varies among isolates with different substitutions. The target protein of DCFs has been unknown, the resistance may be correlated with point mutation in histidine kindnase (OS-related) genes. DMIs inhibit sterol 14α-demethylation step in biosynthesis of ergosterol and resistant mechanisms usually include point mutation of Cyp51 or over-expressions of Cyp51 and transporter genes. But point mutation in Cyp51 is the major mechanism of DMI resistance. Different site mutations or even same site and same amino acid substitutions could lead to different resistance to triazoles. The number of point mutations in Cyp51 varies among fungi, ranging from one mutation to several mutations and different mutations have an additive effect on DMI-resistance. QoIs affect the electron transportation chain by binding to complex III and resistance in this type of fungicides is usually linked to point mutation in Cytb occurring usually at amino acids positions 120-155 and 255-280. The most frequent point mutations are G143A and F129L in Cytb. SDHIs inhibit complex II in electron transportation chain. Its resistance is generally related to point mutation either in SdhB, SdhC or SdhD, but in the majority of pathogens, resistance to SDHIs is due to point mutation in H272 of SdhB. In the contrast, the sites of point mutations in SdhC or SdhD vary among different pathogens.

Key words: phytopathogenic fungi , site-specific fungicide , fungicide resistance , molecular mechanism

[1]张传清, 周明国, 邵振润, 梁桂梅. 稻瘟病菌对异稻瘟净、多菌灵和三环唑的敏感性检测及抗药性变异研究. 中国水稻科学, 2004, 18(5): 455-460.
Zhang C Q, Zhou M G, Shao Z R, Liang G M. Sensitivity detection and resistance variation of Magnaporthe grisea to kitazin P, carbendazim and tricyclazole. Chinese Journal of Rice Science, 2004, 18(5): 455-460. (in Chinese)
[2]严红, 燕继晔, 王忠跃, 李亚宁, 金桂华, 李兴红. 葡萄灰霉病菌对3种杀菌剂的多重抗药性检测. 果树学报, 2012, 29(4): 625-629.
Yan H, Yan J Y, Wang Z Y, Li Y N, Jin G H, Li X H. Multiple fungicide resistance of Botrytis cinerea from grapevine to three fungicides. Journal of Fruit Science, 2012, 29(4): 625-629. (in Chinese)
[3]邵振润, 周明国, 仇剑波, 杨荣明, 刁亚梅, 张帅. 2010年小麦赤霉病发生与抗性调查研究及防控对策. 农药, 2011, 50(5): 385-389.
Shao Z R, Zhou M G, Qiu J B, Yang R M, Diao Y M, Zhang S. The occurrence, resistance to carbendazim of wheat scab and its control measures in Jiangsu province in 2010. Agrochemicals, 2011, 50(5): 385-389. (in Chinese)
[4]李兴红, 乔广行, 黄金宝, 林雪, 刘建华. 北京地区番茄灰霉病菌对嘧霉胺的抗药性检测. 植物保护, 2012, 38(4): 141-143.
Li X H, Qiao G X, Huang J B, Lin X, Liu J H. Detection of the resistance of Botrytis cinerea to pyrimethanil from tomato in Beijing. Plant Protection, 2012, 38(4): 141-143. (in Chinese)
[5]郭一丹, 李强, 王保通, 付晓丽, 王芳. 陕西省小麦白粉菌对三唑酮的抗药性监测. 麦类作物学报, 2012, 32(2): 370-373.
Guo Y D, Li Q, Wang B T, Fu X L, Wang F. Monitoring of the resistance of Blumeria graminis f. sp. tritici isolates to tridimefon in Shaanxi province. Journal of Triticeae Crops, 2012, 32(2): 370-373. (in Chinese)
[6]Howard R J, Aist J R. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasma, 1977, 92(3/4): 195-210.
[7]Howard R J, Aist J R. Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2- ylcarbamate determined by freeze-substitution of hyphal tip cells. The Journal of Cell Biology, 1980, 87(1): 55-64.
[8]Ma Z H, Luo Y, Michailides T J. Resistance of Botryosphaeria dothidea from pistachio to iprodione. Plant Disease, 2001, 85(2): 183-188.
[9]Yamaguchi I, Fujimura M. Recent topics on action mechanisms of fungicides. Journal of Pesticide Science, 2005, 30(2): 67-74.
[10]Siegel M R. Sterol-inhibiting fungicides-effects on sterol biosynthesis and sites of action. Plant Disease, 1981, 65(12): 986-989.
[11]Bartlett D W, Clough J M, Godwin J R, Hall A A, Hamer M, Parr- Dobrzanski B. The strobilurin fungicides. Pest Management Science, 2002, 58(7): 649-662.
[12]Fernandez-Ortuno D, Tores J A, De Vicente A, Perez-Garcia A. Mechanisms of resistance to Qol fungicides in phytopathogenic fungi. International Microbiology, 2008, 11(1):1-9.
[13]Hägerhäll C. Succinate: quinone oxidoreductases: Variations on a conserved theme. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1997, 1320(2): 107-141.
[14]Ackrell B A C. Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Letters, 2000, 466(1): 1-5.
[15]Sun F, Huo X, Zhai Y J, Wang A J, Xu J X, Su D, Bartlam M, Rao Z H. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell, 2005, 121(7): 1043-1057.
[16]Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S. Structural and computational analysis of the quinone-binding site of complex II (succinate- ubiquinone oxidoreductase): A mechanism of electron transfer and proton conduction during ubiquinone reduction. The Journal of Biological Chemistry, 2006, 281(11): 7309-7316.
[17]Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science, 2003, 299(5607): 700-704.
[18]Huang L S, Sun G, Cobessi D, Wang A C, Shen J T, Tung E Y, Anderson V E, Berry E A. 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by Complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. The Journal of Biological Chemistry, 2006, 281(9): 5965-5972.
[19]Koenraadt H, Somerville S C, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology, 1992, 82(11): 1348-1354.
[20]Albertini C, Gredt M, Leroux P. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochemistry and Physiology, 1999, 64(1): 17-31.
[21]Chen F, Liu X, Schnabel G. Field strains of Monilinia fructicola resistant to both MBC and DMI fungicides isolated from stone fruit orchards in the eastern United States. Plant Disease, 2013, 97(8): 1063-1068.
[22]Banno S, Fukumori F, Ichiishi A, Okada K, Uekusa H, Kimura M, Fujimura M. Genotyping of benzimidazole-resistant and dicarboximide- resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays. Phytopathology, 2008, 98(4): 397-404.
[23]Chen C J, Yu J J, Bi C W, Zhang Y N, Xu J Q, Wang J X, Zhou M G. Mutations in a β-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology, 2009, 99(12): 1403-1411.
[24]Qiu J B, Xu J Q, Yu J J, Bi C W, Chen C J, Zhou M G. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis. Pest Management Science, 2011, 67(2): 191-198.
[25]Ma Z H, Michailides T J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 2005, 24(10): 853-863.
[26]Trkulja N, Ivanovic Z, Pfaf-Dolovac E, Dolovac N, Mitrovic M, Tosevski I, Jovic J. Characterisation of benzimidazole resistance of Cercospora beticola in Serbia using PCR-based detection of resistance-associated mutations of the β-tubulin gene. European Journal of Plant Pathology, 2013, 135(4): 889-902.
[27]Davidson R M, Hanson L E, Franc G D, Panella L. Analysis of β-tubulin gene fragments from benzimidazole-sensitive and -tolerant Cercospora beticola. Journal of Phytopathology, 2006, 154(6): 321-328.
[28]Imazaki I, Ishikawa K, Yasuda N, Miyasaka A, Kawasaki S, Koizumi S. Incidence of thiophanate-methyl resistance in Cercospora kikuchii within a single lineage based on amplified fragment length polymorphisms in Japan. Journal of General Plant Pathology, 2006, 72(2): 77-84.
[29]Kongtragoul P, Nalumpang S, Miyamoto Y, Izumi Y, Akimitsu K. Mutation at codon 198 of Tub2 gene for carbendazim resistance in Colletotrichum gloeosporioides causing mango anthracnose in Thailand. Journal of Plant Protection Research, 2011, 51(4): 377-384.
[30]Chung W H, Chung W C, Peng M T, Yang H R, Huang J W. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. New Biotechnology, 2010, 27(1): 17-24.
[31]Malandrakis A A, Markoglou A N, Ziogas B N. PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece. Crop Protection, 2012, 39: 11-17.
[32]Yin Y, Liu X, Shi Z, Ma Z. A multiplex allele-specific PCR method for the detection of carbendazim-resistant Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 2010, 97(1): 36-42.
[33]Ziogas B N, Nikou D, Markoglou A N, Malandrakis A A, Vontas J. Identification of a novel point mutation in the β-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. European Journal of Plant Pathology, 2009, 125(1): 97-107.
[34]Martin L, Teresa Martin M. Characterization of fungicide resistant isolates of Phaeoacremonium aleophilum infecting grapevines in Spain. Crop Protection, 2013, 52: 141-150.
[35]Shi H, Wu H, Zhang C, Shen X. Monitoring and characterization of resistance development of strawberry Phomopsis leaf blight to fungicides. European Journal of Plant Pathology, 2013, 135(4): 655-660.
[36]Schmidt L S, Ghosoph J M, Margosan D A, Smilanick J L. Mutation at β-tubulin codon 200 indicated thiabendazole resistance in Penicillium digitatum collected from California citrus packinghouses. Plant Disease, 2006, 90(6): 765-770.
[37]Quello K L, Chapman K S, Beckerman J L. In situ detection of benzimidazole resistance in field isolates of Venturia inaequalis in Indiana. Plant Disease, 2010, 94(6): 744-750.
[38]Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I. A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology, 2002, 92(1): 75-80.
[39]Oshima M, Banno S, Okada K, Takeuchi T, Kimura M, Ichiishi A, Yamaguchi I, Fujimura M. Survey of mutations of a histidine kinase gene Bc0S1 in dicarboximide-resistant field isolates of Botrytis cinerea. Journal of General Plant Pathology, 2006, 72(1): 65-73.
[40]Dry I B, Yuan K H, Hutton D G. Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fungal Genetics and Biology, 2004, 41(1): 102-108.
[41]Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Management Science, 2001, 57(5): 437-442.
[42]Luo Y Y, Yang J K, Zhu M L, Liu C J, Li H Y, Lu Z B, Pan W Z, Zhang Z H, Bi W, Zhang K Q. The group III two-component histidine kinase Alhk1 is involved in fungicides resistance, osmosensitivity, spore production and impacts negatively pathogenicity in Alternaria longipes. Current Microbiology, 2012, 64(5): 449-456.
[43]Yang Q, Yan L, Gu Q, Ma Z. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Applied Microbiology and Biotechnology, 2012, 96(2): 481-492.
[44]Becher R, Weihmann F, Deising H B, Wirsel S G R. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics, 2011, 12: 52.
[45]Mellado E, Diaz-Guerra T M, Cuenca-Estrella M, Rodriguez-Tudela J L. Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. Journal of Clinical Microbiology, 2001, 39(7): 2431-2438.
[46]Liu X, Jiang J, Shao J, Yin Y, Ma Z. Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole. Applied Microbiology and Biotechnology, 2010, 85(4): 1105-1114.
[47]Cools H J, Parker J E, Kelly D E, Lucas J A, Fraaije B A, Kelly S L. Heterologous expression of mutated eburicol 14 α-demethylase (CYP51) proteins of Mycosphaerella graminicola to assess effects on azole fungicide sensitivity and intrinsic protein function. Applied and Environmental Microbiology, 2010, 76(9): 2866-2872.
[48]Lamb D C, Kelly D E, Schunck W H, Shyadehi A Z, Akhtar M, Lowe D J, Baldwin B C, Kelly S L. The mutation T315A in Candida albicans sterol 14 α-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. The Journal of Biological Chemistry, 1997, 272(9): 5682-5688.
[49]Warrilow A G S, Martel C M, Parker J E, Melo N, Lamb D C, Nes W D, Kelly D E, Kelly S L. Azole binding properties of Candida albicans sterol 14-α demethylase (CaCYP51). Antimicrobial Agents and Chemotherapy, 2010, 54(10): 4235-4245.
[50]Keon J P R, White G A, Hargreaves J A. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Current Genetics, 1991, 19(6): 475-481.
[51]Fan J, Chen F, Diao Y, Cools H, Kelly S, Liu X. The Y123H substitution perturbs FvCYP51B function and confers prochloraz resistance in laboratory mutants of Fusarium verticillioides. Plant Pathology, 2013, doi: 10.1111/ppa.12168.
[52]Leroux P, Walker A S. Multiple mechanisms account for resistance to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science, 2011, 67(1): 44-59.
[53]Garcia-Effron G, Mellado E, Gomez-Lopez A, Alcazar-Fuoli L, Cuenca-Estrella A, Rodriguez-Tudela J L. Differences in interactions between azole drugs related to modifications in the 14-α sterol dernethylase gene (cyp51A) of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2005, 49(5): 2119-2121.
[54]Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T. Essential gene identification and drug target prioritization in Aspergillus fumigatus. Plos Pathogens, 2007, 3(3): e24.
[55]Rodriguez-Tudela J L, Alcazar-Fuoli L, Mellado E, Alastruey- Izquierdo A, Monzon A, Cuenca-Estrella M. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob Agents and Chemotherapy, 2008, 52(7): 2468-2472.
[56]Hamamoto H, Hasegawa K, Nakaune R, Lee Y J, Makizumi Y, Akutsu K, Hibi T. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum. Applied and Environmental Microbiology, 2000, 66(8): 3421-3426.
[57]Ghosoph J M, Schmidt L S, Margosan D A, Smilanick J L. Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest Biology and Technology, 2007, 44(1): 9-18.
[58]Sun X, Wang J, Feng D, Ma Z, Li H. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Applied Microbiology and Biotechnology, 2011, 91(4): 1107-1119.
[59]Luo C X, Schnabel G. The cytochrome P450 lanosterol 14α- demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Applied and Environmental Microbiology, 2008, 74(2): 359-366.
[60]Ma Z H, Proffer T J, Jacobs J L, Sundin G W. Overexpression of the 14α-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Applied and Environmental Microbiology, 2006, 72(4): 2581-2585.
[61]Del Sorbo G, Schoonbeek H, De Waard M A. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biology, 2000, 30(1): 1-15.
[62]Higgins C F, Gottesman M M. Is the multidrug transporter a flippase? Trends in Biochemical Sciences, 1992, 17(1): 18-21.
[63]Zwiers L H, Stergiopoulos L, Van Nistelrooy J G M, De Waard M A. ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola. Antimicrobial Agents and Chemotherapy, 2002, 46(12): 3900-3906.
[64]Kretschmer M, Leroch M, Mosbach A, Walker A S, Fillinger S, Mernke D, Schoonbeek H J, Pradier J M, Leroux P, De Waard M A, Hahn M. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. Plos Pathogens, 2009, 5(12): e1000696.
[65]Gisi U, Sierotzki H, Cook A, McCaffery A. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science, 2002, 58(9): 859-867.
[66]Anonymous. FRAC code list: List of pathogens with field resistance towards QoI fungicides. http://www.frac.info/work/Species%20with% 20QoI-resistance%20(Status%20Dec.%202012)l.pdf.2012.
[67]Lambowitz A M, Slayman C W. Cyanide-resistant respiration in Neurospora crassa. Journal of Bacteriology, 1971, 108(3): 1087-1096.
[68]Joseph-Horne T, Hollomon D W, Wood P M. Fungal respiration: a fusion of standard and alternative components. Biochimica et Biophysica Acta, 2001, 1504(2/3): 179-195.
[69]Ziogas B N, Baldwin B C, Young J E. Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA 5504) in Septoria tritici. Pesticide Science, 1997, 50(1): 28-34.
[70]Roohparvar R, De Waard M A, Kema G H J, Zwiers L H. MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genetics and Biology, 2007, 44(5): 378-388.
[71]Ziogas B N, Markoglou A N, Theodosiou D I, Anagnostou A, Boutopoulou S. A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. European Journal of Plant Pathology, 2006, 115(3): 283-292.
[72]Avenot H F, Michailides T J. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 2010, 29(7): 643-651.
[73]Avenot H F, Sellam A, Karaoglanidis G, Michailides T J. Characterization of mutations in the iron-sulphur subunit of succinate dehydrogenase correlating with boscalid resistance in Alternaria alternata from California pistachio. Phytopathology, 2008, 98(6): 736-742.
[74]Avenot H, Sellam A, Michailides T. Characterization of mutations in the membrane-anchored subunits AaSDHC and AaSDHD of succinate dehydrogenase from Alternaria alternata isolates conferring field resistance to the fungicide boscalid. Plant Pathology, 2009, 58(6): 1134-1143.
[75]Miyamoto T, Ishii H, Stammler G, Koch A, Ogawara T, Tomita Y, Fountaine J M, Ushio S, Seko T, Kobori S. Distribution and molecular characterization of Corynespora cassiicola isolates resistant to boscalid. Plant Pathology, 2010, 59(5): 873-881.
[76]Fernandez-Ortuno D, Chen F, Schnabel G. Resistance to pyraclostrobin and boscalid in Botrytis cinerea isolates from strawberry fields in the Carolinas. Plant Disease, 2012, 96(8): 1198-1203.
[77]Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J. A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Current Genetics, 1998, 34(5): 393-398.
[78]Gudmestad N C, Arabiat S, Miller J S, Pasche J S. Prevalence and impact of SDHI fungicide resistance in Alternaria solani. Plant Disease, 2013, 97(7): 952-960.
[79]van den Bosch F, Paveley N, Shaw M, Hobbelen P, Oliver R. The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathology, 2011, 60(4): 597-606.
[80]Rosenberg S M. Evolving responsively: Adaptive mutation. Nature Reviews Genetics, 2001, 2(7): 504-515.
[81]Hersh M N, Ponder R G, Hastings P J, Rosenberg S M. Adaptive mutation and amplification in Escherichia coli:  two pathways of genome adaptation under stress. Research in Microbiology, 2004, 155(5): 352-359.
[82]Brooks A N, Turkarslan S, Beer K D, Lo F Y, Baliga N S. Adaptation of cells to new environments. Wiley Interdisciplinary Reviews-Systems Biology and Medicine, 2011, 3(5): 544-561.
[83]Galhardo R S, Hastings P J, Rosenberg S M. Mutation as a stress response and the regulation of evolvability. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42(5): 399-435.
[84]祝雯, 詹家绥. 植物病原物的群体遗传学. 遗传, 2012, 34(2): 157-166.
Zhu W, Zhan J S. Population genetics of plant pathogens. Hereditas. 2012, 34(2): 157-166. (in Chinese)
[85]Hou Y, Luo Q, Chen C, Zhou M. Application of tetra primer ARMS- PCR approach for detection of Fusarium graminearum genotypes with resistance to carbendazim. Australasian Plant Pathology, 2013, 42(1): 73-78.
[86]Delgado J A, Lynnes T C, Meinhardt S W, Wise K A, Gudmestad N C, Bradley C A, Markell S G, Goswami R S. Identification of the mutation responsible for resistance to QoI fungicides and its detection in Ascochyta rabiei (teleomorph Didymella rabiei). Plant Pathology, 2013, 62(3): 688-697.
[87]Aoki Y, Hada Y, Suzuki S. Development of a multiplex allele-specific primer PCR assay for simultaneous detection of QoI and CAA fungicide resistance alleles in Plasmopara viticola populations. Pest Management Science, 2013, 69(2): 268-273.
[88]Luo C X, Cox K D, Amiri A, Schnabel G. Occurrence and detection of the DMI resistance-associated genetic element 'Mona' in Monilinia fructicola. Plant Disease, 2008, 92(7): 1099-1103.
[89]Yin Y N, Xiao C L. Molecular characterization and a multiplex allele-specific PCR method for detection of thiabendazole resistance in Penicillium expansum from apple. European Journal of Plant Pathology, 2013, 136(4): 703-713.
[1] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
[2] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[3] LI JiaJia, ZHENG ShuangYu, SUN GenLou, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Advances and Perspectives in Research of Physiological and Molecular Mechanism of Soybean Response to High Temperature Stress [J]. Scientia Agricultura Sinica, 2017, 50(14): 2670-2682.
[4] SUN Yu-yan, LI Xi-xiang. A Review on Molecular Mechanism of the Modified Roots or Stems Development in Vegetables [J]. Scientia Agricultura Sinica, 2015, 48(6): 1162-1176.
[5] ZHANG Rui, ZHANG Zong-ying, GAO Li-ping, JI Xiao-hao, MAO Zhi-quan, XU Hai-feng, WANG Nan, WU Shu-jing, CHEN Xue-sen. Study on the Molecular Mechanism Controlling Differences in Fruit Texture Formation of Apple Soft/Crisp Strains [J]. Scientia Agricultura Sinica, 2015, 48(18): 3676-3688.
[6] QI Nan-nan, ZHANG Xiao-yan, SU Na-na, WU Qi, GENG Dian-xiang, QI Xue-hui, WEI Sheng-jun, CUI Jin. The Molecular Mechanism of UV-A Induced Anthocyanin Accumulation in the Hypocotyls of Soybean Sprouts [J]. Scientia Agricultura Sinica, 2015, 48(12): 2408-2416.
[7] GUO Bao-Jian, SUI Zhi-Peng, LI Yang-Yang, FENG Wan-Jun, YAN Wen-Wen, LI Hui-Min, SUN Qi-Xin, NI Zhong-Fu. Differentially Expressed Protein Profile of Maize Seedling Leaves Between Hybrid and Its Parental Lines [J]. Scientia Agricultura Sinica, 2013, 46(14): 3046-3054.
[8] MA Yong,WU Jian-yong,XING Chao-zhu,GUO Li-ping,GONG Yang-cang,CUI Ming-hui,Wang Hai-lin
. Differentially Expressed Genes Between Cytoplasmic Male Sterility Lines and Maintainer Lines of Gossypium harknessii
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3706-3712 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!