Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (22): 4837-4841.doi: 10.3864/j.issn.0578-1752.2013.22.022

• RESEARCH NOTES • Previous Articles     Next Articles

Interspecific Competition Between Encarsia sophia and E. formosa and Their Impacts on Suppression of Trialeurodes vaporariorum

 LIU  Lin-Zhou-1, DAI  Peng-1, LU Bing-1 , ZANG  Lian-Sheng-1, DU  Wen-Mei-1, WAN  Fang-Hao-2   

  1. 1.Engineering Research Center of Natural Enemy Insects, Institute of Biological Control, Jilin Agricultural University, Changchun 130118
    2.State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2013-04-10 Online:2013-11-15 Published:2013-06-18

Abstract: 【Objective】The objective of this study is to determine the potential of Encarsia sophia, a heteronomous hyperparasitoid, replacing primary parasitoids that share the same hosts and disrupting whitefly suppression in combination with primary parasitoids E. formosa. 【Method】 In this study, E. sophia and the primary parasitoid, E. formosa were released at ratios of 10﹕0, 8﹕2 , 5﹕5, 2﹕8 and 0﹕10 for controlling the greenhouse whitefly, Trialeurodes vaporariorum, on tomato. After releasing, the population dynamics of E. sophia, E. formosa and T. vaporariorum were investigated every 20 d.【Result】The percentage of E. formosa in total parasitoids was always kept about 50% sixty days after both parasitoids were released at different ratios. Releases of any one parasitoid species only or both of the parasitoids at different ratios provided low levels of whitefly population. Especially, the population of T. vaporariorum was always effectively suppressed with more than 83% whiteflies killed by parasitism and host feeding after E. sophia and E. formosa were released at a ratio of 5﹕5.【Conclusion】The heteronomous hyperparasitoid (E. sophia) can’t replace the primary parasitoid (E. formosa) on T. vaporariorum. The competitive interactions between the two parasitoid species do not reduce the efficiency of whitefly suppression.

Key words: Encarsia sophia , Encarsia formosa , Trialeurodes vaporariorum , competitive displacement , biological control

[1]Williams T. Invasion and displacement of experimental populations of a conventional parasitoid by a heteronomous hyperparasitoid. Biocontrol Science and Technology, 1996, 6(4): 603-618.

[2]Walter G H. ‘Divergent male ontogenies’ in Aphelinidae (Hymenoptera: Chalcidoidea): a simplified classification and a suggested evolutionary sequence. Biological Journal of the Linnean Society, 1983, 19(1): 63-82.

[3]Hunter M S, Woolley J B. Evolution and behavioral ecology of heteronomous aphelinid parasitoids. Annual Review of Entomology, 2001, 46: 251-290.

[4]Polis G A, Holt R D. Intraguild predation: the dynamics of complex trophic interactions. Trends in Ecology & Evolution, 1992, 7(5): 151-154.

[5]Hunter M S, Collier T R, Kelly S E. Does an autoparasitoid disrupt host suppression provided by a primary parasitoid? Ecology, 2002, 83(5): 1459-1469.

[6]Mills N J, Gutierrez A P. Prospective modeling in biological control: an analysis of the dynamics of heteronomous hyperparasitism in a cotton-whitefly-parasitoid system. Journal of Applied Ecology, 1996, 33(6): 1379-1394.

[7]Reitz S R, Trumble J T. Competitive displacement among insects and arachnids. Annual Review of Entomology, 2002, 47: 435-465.

[8]Van Lenteren J C, Bale J, Bigler F, Hokkanen H M T, Loomans A J M. Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review of Entomology, 2006, 51: 609-634.

[9]Briggs C J, Collier T R. Autoparasitism, interference, and parasitoid-pest population dynamics. Theoretical Population Biology, 2001, 60(1): 33-57.

[10]Ehler L E. Utility of facultative secondary parasites in biological control. Environmental Entomology, 1979, 8(5): 829-832.

[11]Heinz K M, Nelson J M. Interspecific interactions among natural enemies of Bemisia in an inundative biological control program. Biological Control, 1996, 6(3): 384-393.

[12]Thompson C R, Cornell J A, Sailer R I. Interactions of parasites and hyperparasites in biological control of citrus blackfly, Aleurocanthus woglumi (Homoptera: Aleyrodidae), in Florida. Environmental Entomology, 1987, 16(1): 140-144.

[13]Bogran C E, Heinz K M, Ciomperlik M A. Interspecific competition among insect parasitoids: field experiments with whiteflies as hosts in cotton. Ecology, 2002, 83(3): 653-668.

[14]李元喜, 罗晨, 周长青, 周淑香, 张帆. 烟粉虱两种寄生蜂生物学特性及寄主竞争关系研究. 昆虫学报, 2008, 51(7): 738-744.

Li Y X, Luo C, Zhou C Q, Zhou S X, Zhang F. Bionomics and host competition of two parasitoids on Bemisia tabaci. Acta Entomologica Sinica, 2008, 51(7): 738-744. (in Chinese)

[15]冀禄禄, 杨念婉, 万方浩, 李照会. 海氏桨角蚜小蜂和浅黄恩蚜小蜂雌性生殖系统的解剖结构. 中国生物防治学报, 2012, 28(3): 303-307.

Ji L L, Yang N W, Wan F H, Li Z H. Female reproductive system of Eretmocerus hayati (Zolnerowich & Rose) and Encarsia sophia (Girault & Dodd), parasitoids of Bemisia tabaci (Gennadius). Chinese Journal of Biological Control, 2012, 28(3): 303-307. (in Chinese)

[16]Zang L S, Liu T X, Wan F H. Reevaluation of the value of autoparasitoids in biological control. PLoS ONE, 2011, 6(5): e20324.

[17]Zang L S, Liu T X. Host-feeding of three whitefly parasitoid species on Bemisia tabaci biotype B and implication for whitefly biological control. Entomologia Experimentalis et Applicata, 2008, 127(1): 55-63.

[18]Hoddle M, Van Driesche R, Sanderson J. Biology and use of the whitefly parasitoid Encarsia formosa. Annual Review of Entomology, 1998, 43: 645-669.

[19]Dai P, Liu L Z, Ruan C C, Zang L S, Wan F H. Effect of the primary host for production of both sexes on the mating interaction in an autoparasitoid species. BioControl, 2013, 58(3): 331-339.
[1] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[2] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[3] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[4] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[5] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[6] LI Shu,WANG Jie,HUANG NingXing,JIN ZhenYu,WANG Su,ZHANG Fan. Research Progress and Prospect on Banker Plant Systems of Predators for Biological Control [J]. Scientia Agricultura Sinica, 2020, 53(19): 3975-3987.
[7] ZHANG Lei,JIA Qi,WU Wei,ZHAO LuPing,XUE Bing,LIU HuanHuan,SHANG Jing,YONG TaiWen,LI Qing,YANG WenYu. Species Identification and Virulence Determination of Beauveria bassiana Strain BEdy1 from Ergania doriae yunnanus [J]. Scientia Agricultura Sinica, 2020, 53(14): 2974-2982.
[8] SHA YueXia,SUI ShuTing,ZENG QingChao,SHEN RuiQing. Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
[9] LI YuJia, LI Qian, ZHANG ZhiXiang, LI ShiFang. Screening and identification of peach endophytic bacteria with antagonism against Agrobacterium tumefaciens [J]. Scientia Agricultura Sinica, 2017, 50(20): 3918-3929.
[10] LU Hui-hui, LIN Zhi-qiang, TAN Wan-zhong, LUO Hua-dong, XIAN Fei, BI Chao-wei, YU Yang, YANG Yu-heng. Insecticidal Protein Genes of Bacillus thuringiensis Strain CPB012 and Its Effects in Controlling Different Insect Pests [J]. Scientia Agricultura Sinica, 2015, 48(6): 1112-1121.
[11] ZHANG Fan, LI Shu, XIAO Da, ZHAO Jing, WANG Ran, GUO Xiao-jun, WANG Su. Progress in Pest Management by Natural Enemies in Greenhouse Vegetables in China [J]. Scientia Agricultura Sinica, 2015, 48(17): 3463-3476.
[12] ZHANG Rong-Sheng, WANG Xiao-Yu, LUO Chu-Ping, LIU Yong-Feng, LIU You-Zhou, CHEN Zhi-Yi. Identification of the Lipopeptides from Bacillus amyloliquefaciens Lx-11 and Biocontrol Efficacy of Surfactin Against Bacterial Leaf Streak [J]. Scientia Agricultura Sinica, 2013, 46(10): 2014-2021.
[13] LUO Hua-Dong, YAN Jia-Lin, YU Yang, TAN Wan-Zhong. Isolation, Screening and Identification of Bacterial Agents for Biological Control of Colorado Potato Beetle (Leptinotarsa decemlineata) [J]. Scientia Agricultura Sinica, 2012, 45(18): 3744-3754.
[14] WANG Jing, HUANG Yun, YAO Jia, LIN Shan, LI Xiao-Lan, QIN Yun. Identification and Control Effects of Two Antagonistic Actinomycetes Against Clubroot [J]. Scientia Agricultura Sinica, 2011, 44(13): 2692-2700 .
[15] . Effects of high temperature exposure on survival and fecundity of two whitefly species: Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) [J]. Scientia Agricultura Sinica, 2008, 41(2): 424-430 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!