Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (18): 3922-3929.doi: 10.3864/j.issn.0578-1752.2013.18.023

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Expression of RVNP in the Silk Gland of Transgenic Silkworm (Bombyx mori)

 YOU  Zheng-Ying-1, WEI  Hao-13, RUAN  Xi-Zhen-2, YE  Lu-Peng-1, WANG  Shao-Hua-1, ZHOU  Ji-Yong-2, ZHONG  Bo-Xiong-1   

  1. 1.Department of Special Economic Animal Science of College of Animal Science, Zhejiang University, Hangzhou 310029
    2.Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310029
    3.Animal & Domestic Breeding Center of Hubei Province, Wuhan 430070
  • Received:2013-03-01 Online:2013-09-15 Published:2013-04-26

Abstract: 【Objective】In order to obtain a potent technology which can produce high value RVNP protein and then lay a foundation for the production of vaccines, the silk gland bioreactor was employed as an expression system in this study.【Method】The nucleoprotein gene of rabies virus ERA strain (RVNP) was cloned by RT-PCR, and the RVNP was firstly connected to the downstream of middle silk gland-specific Ser1 promoter, and then inserted into pBA3EGFP, an expression vector which contained an EGFP reporter gene. By using the transgenic method, the silk gland bioreactor of piggyback-mediated transgenic silkworm was obtained. 【Result】Twenty-six broods of transgenic silkworms (G1) were obtained and the GFP-positive percentage of broods was 59.09%. Further PCR identification indicated that RVNP had been integrated into silkworm genome, and Western blot analysis showed that the protein might be attached to the sericin which was secreted into the cocoon with the spinning of transgenic silkworms. 【Conclusion】Transgenic silkworm strain able to express exogenous RVNP protein was obtained. The present system is expected to become a high efficiency, low-cost and stable technical system to produce genetic engineering rabies vaccine.

Key words: rabies , silk gland bioreactor , piggyBac , silkworm (Bombyx mori)

[1]Abe C. Anti-tuberculosis drug resistance in Japan and in the world. Kekkaku, 2001, 76(11): 699-706.

[2]殷震, 刘景华. 动物病毒学. 2版. 北京: 科学出版社, 1997.

Yin Z, Liu J H. Animal Virology. 2nd ed. Beijing: Science Press, 1997. (in Chinese)

[3]Liu P H, Yang J, Wu X F, Fu Z F. Interactions amongst rabies virus nucleoprotein, phosphoprotein and genomic RNA in virus-infected and transfected cells. Journal of General Virology, 2004, 85(12): 3725-3734.

[4]Mannen K, Hiramatsu K, Mifune K, Sakamoto S. Conserved nucleotide sequence of rabies virus cDNA encoding the nucleoprotein. Virus Genes, 1991, 5(1): 69-73.

[5]蔡月琴, 马益萍, 申会刚, 郭军庆, 周继勇. 狂犬病病毒核蛋白基因在大肠杆菌中的高效表达. 中国兽医科学, 2007, 37(2): 145-149.

Cai Y Q, Ma Y P, Shen H G, Guo J Q, Zhou J Y. High-level expression of nucleoprotein gene of rabies virus in Escherichia coli. Veterinary Science in China, 2007, 37(2): 145-149. (in Chinese)

[6]尹伟, 徐洁萍, 张金阳, 颜焰, 周继勇. 狂犬病病毒核蛋白在 Bac-To-Bac/AcMNPV 杆状病毒系统的表达. 中国预防兽医学报, 2010, 32(2): 86-89.

Yin W, Xu J P, Zhang J Y, Yan Y, Zhou J Y. Expression of nucleoprotein of Rabies virus in Bac-To-Bac/AcMNPV Baculovirus expression system. Chinese Journal of Preventive Veterinary Medicine, 2010, 32(2): 86-89. (in Chinese)

[7]Arango I P, Rubio E L, Anaya E R, Flores T O, de la Vara L G, Lim M A G. Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune responses in mice. Plant Cell Reports, 2008, 27(4): 677-685.

[8]杨卉娟, 陈俊英, 孙明波, 张新文, 钱源, 段骞, 王东宝, 姜述德, 廖国阳, 李卫东. 狂犬病毒aG株核蛋白和糖蛋白双表达质粒的构建及其在真核细胞中的表达. 中国生物制品学杂志, 2006, 19(6): 564-567.

Yang H J, Chen J Y, Sun M B, Zhang X W, Qian Y, Duan Q, Wang D B, Jiang S D, Liao G Y, Li W D. Construction of recombinant plasmid for co-expression of nucleoprotein and glycoprotein of Rabies virus aG strain in eukaryotic cells. Chinese Journal of Biologicals, 2006, 19(6): 564-567. (in Chinese)

[9]钟伯雄, 危浩, 庄兰芳. piggyBac转座子介导的转基因家蚕丝腺生物反应器研究进展. 中国农业科学, 2011, 44(21): 4488-4498.

Zhong B X, Wei H, Zhuang L F. Advances in research of silk gland bioreactor of piggyBac-mediated transgenic silkworm. Scientia Agricultural Sinica, 2011, 44(21): 4488-4498. (in Chinese)

[10]Toshiki T, Chantal T, Corinne R, Toshio K, Eappen A, Mari K, Natuo K, Jean-Luc T, Bernard M, Gerard C, Paul S, Malcolm F, Jean-Claude P, Piette C. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology, 2000, 18(1): 81-84.

[11]Tatematsu K, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T. Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Research, 2010, 19(3): 473-487.

[12]Xue R Y, Wang Y, Cao G L, Pan Z H, Zheng X J, Zhou W L, Gong C L. Lowering the blood glucose of diabetes mellitus mice by oral administration with transgenic human insulin-like growth factor I silkworms. Journal of Agricultural and Food Chemistry, 2012, 60(26): 6559-6564.

[13]Sato M, Kojima K, Sakuma C, Murakami M, Aratani E, Takenouchi T, Tamada Y, Kitani H. Production of scFv-conjugated affinity silk powder by transgenic silkworm technology. PLoS One, 2012, 7(4): e34632.

[14]Tatemastu K I, Sezutsu H, Tamura T. Utilization of transgenic silkworms for recombinant protein production. Journal of Biotechnology & Biomaterials, 2012, S9: 1-8.

[15]Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M. Production of a non-triple helical collagen α chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnology and Bioengineering, 2010, 106(6): 860-870.

[16]Xue R Y, Chen H M, Cui L L, Cao G L, Zhou W L, Zheng X J, Gong C L. Expression of hGM-CSF in silk glands of transgenic silkworms using gene targeting vector. Transgenic Research, 2012, 21(1): 101-111.

[17]Zhao A C, Zhao T F, Zhang Y S, Xia Q Y, Lu C, Zhou Z Y, Xiang Z H, Nakagaki M. New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Research, 2010, 19(1): 29-44.

[18]Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K. A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Research, 2007, 16(4): 449-465.

[19]Wen H X, Lan X Q, Zhang Y S, Zhao T F, Wang Y J, Kajiura Z, Nakagaki M. Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Molecular Biology Reports, 2010, 37(4): 1815-1821.

[20]Tomita M. Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnology Letters, 2011, 33(4): 645-654.

[21]Zhong B X, Li J Y, Chen J E, Ye J, Yu S D. Comparison of transformation efficiency of piggyBac transposon among three different silkworm Bombyx mori strains. Acta Biochimica et Biophysica Sinica, 2007, 39(2): 117-122.

[22]Inoue S, Kanda T, Imamura M, Quan G X, Kojima K, Tanaka H, Tomita M, Hino R, Yoshizato K, Mizuno S, Tamura T. A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochemistry and Molecular Biology, 2005, 35(1): 51-59.

[23]Wang F, Xu H F, Yuan L, Ma S Y, Wang Y C, Duan X L, Duan J P, Xiang Z H, Xia Q Y. An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms. Transgenic Research, 2013: DOI 10.1007/s11248-013-9695-6.

[24]Liu Y, Yu L, Guo X Y, Guo T Q, Wang S P, Lu C D. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori. Biochemical and Biophysical Research Communications, 2006, 342(1): 273-279.

[25]Cong L, Cao G L, Xue R Y, Pan Z H, Zheng X J, Zhou W L, Gong C L. Reducing blood glucose level in TIDM mice by orally administering the silk glands of transgenic hIGF-I silkworms. Biochemical and Biophysical Research Communications, 2011, 410(4): 721-725.
[1] SHEN Dan, XIE Yu-xiu, LI Qing-ping, XUE Song-lei, SHI Yun-qiang, WANG Sai-sai, CHEN Cai, QIAN Yue, GAO Bo, CUI Heng-mi, SONG Cheng-yi. Construction of Multi-Transposon Vectors, and Comparative Study of Transposon Characteristics [J]. Scientia Agricultura Sinica, 2015, 48(11): 2270-2278.
[2] CHENG Dao-Jun, LI Zhi-Qing, MENG Meng, PENG Jian, QIAN Wen-Liang, KANG Li-Xia, XIA Qing-You. Characterization of Cytochrome P450 Genes Involving in Ecdysteroidogenesis in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2014, 47(3): 594-604.
[3] BAI Ding-Ping, FANG Kun, YANG Ming-Ming, QU Lei, CHEN Yu-Lin. Integration Sites and Their Characteristic Analysis of piggyBac Transposon in Cashmere Goat Genome [J]. Scientia Agricultura Sinica, 2012, 45(5): 958-965.
[4] ZHANG Ting-Ting, XIN Ying, ZHANG Zhi-Qiang, REN Chong-Hua, YANG Han-Jiang, WANG Ling, ZHANG Zhi-Ying. Construction and Integration Efficiency of PiggyBac Transposon Inducible Cell Immortalization Transgenic Vector [J]. Scientia Agricultura Sinica, 2012, 45(17): 3576-3583.
[5] ZHONG Bo-Xiong, WEI Hao, ZHUANG Lan-Fang. Advances in Research of Silk Gland Bioreactor of piggyback –Mediated Transgenic Silkworm [J]. Scientia Agricultura Sinica, 2011, 44(21): 4488-4498.
[6] ,,,,. Construction and Identification of a Recombinant Pseudorabies Virus Expressing ORF2 Gene of Porcine Circovirus Type 2 [J]. Scientia Agricultura Sinica, 2006, 39(8): 1716-1722 .
[7] ,,,,,,,. Analysis of Two-Dimensional Gel Electrophoresis Patterns of Protein from Posterior Silkgland of Silkworm Bombyx mori on Day 1 and Day 4 in 5th Instar Stage [J]. Scientia Agricultura Sinica, 2006, 39(7): 1501-1506 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!