Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (15): 3212-3219.doi: 10.3864/j.issn.0578-1752.2013.15.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

The Apoptosis of Bovine Primary Mammary Epithelial Cells Induced by Staphylococcus aureus

 CUI  Xin-Jie, HU  Qing-Liang, LI  Yi-Ping, TAO  Lin, XIU  Lei, LIU  Bing-Chun, CHEN  Yuan, WANG  Xiao   

  1. College of Life Sciences, Inner Mongolia University, Hohhot 010010
  • Received:2013-02-01 Online:2013-08-01 Published:2013-05-20

Abstract: 【Objective】 The objective of this experiment is to observe if apoptosis of the primary bovine mammary epithelial cells could be induced by Staphylococcus aureus in vitro. 【Method】Bovine Mammary Epithelial Cells were separated from fresh milk and evaluated by RT-PCR and protein assaies of keratin8. After infection, light microscopy, scanning electron microscopy and Annexin V/PI staining were used to evaluate the apoptosis of bovine mammary epithelial cells, and the apoptosis ratios were calculated. The expression of caspase 3 and caspase 8 were detected by RT-PCR. 【Result】 The cells’ shape looked like typical paving stones and keratin 8 was also detected by immunohistochemistry and PCR. Bovine mammary epithelial cells were round shrink aged with the apoptosis morphologies, and the expression of caspase 3 and caspase 8 was up-regulated after infection. 【Conclusion】S. aureus could induce apoptosis of bovine mammary epithelial cells, and the apoptosis pathway could be associated with caspase 3 and caspase 8.

Key words: S. aureus , bovine mammary epithelial cells , apoptosis

[1]韩齐, 孔保华, 李沛军, 李暮春. 实时荧光定量PCR技术在金黄色葡萄球菌检测中的应用. 食品工业科技, 2013, 1: 1-7.

Han Q, Kong B H, Li P J, Li M C. Application of Real-time PCR technology in Staphylococcus aureus detection. Science and Technology of Food Industry, 2013, 1: 1-7. (in Chinese)

[2]John R M. Staphylococcus Aureus Intramammary Infections in the Face of Routine Contagious Mastitis Pathogen Control Procedures: The Role of Staphylococcus Aureus Strain and Possible Intervention Strategies. Washington State University, 2001.

[3]Raphael C K, Mary H F K, Maria A V, Paiva B, Luciano G F, Andrea O B R. Staphylococcus aureus of bovine origin: Genetic diversity, prevalence and the expression of adhesin-encoding genes. Veterinary Microbiology, 2012, 160(1): 183-188.

[4]Denise M, Stanley F. Apoptosis as a common bacterial virulence strategy. International Journal of Medical Microbiology, 2000, 290: 7-13.

[5]Marcelo L, Rafaella F C P, Gisele G C, Luciana M H. Pathogenic and opportunistic respiratory bacteria-induced apoptosis. The Brazilian Journal of Infectious Diseases, 2009, 13(3): 226-231.

[6]Long E, Capuco A V, Wood D L, Sonstegard T, Tomita G, Paape M J, Zhao X. Escherichia coliinduces apoptosis and proliferation of mammary cells. Cell Death and Differentiation, 2001, 8: 808-816.

[7]Kim J M, Eckmann L, Savidge T C, Lowe D C, Witthoft T, Kagnoff M F. Apoptosis of human intestinal epithelial cells after bacterial invasion. The American Society for Clinical Investigation, 1998, 102(10): 1815-1823.

[8]Valente E, Assis M C, Alvim I M P, Pereira G M B, Plotkowski M C. Pseudomonas aeruginosa induces apoptosis in human endothelial cells. Microbial Pathogenesis, 2000, 29: 345-356.

[9]Joanna K, Agnieszka M G, Tomasz M, Malgorzata B, Daniel E S, Whitney A R, Shaw L N, Deleo F R, Potempa J. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS ONE, 2009, 4(4): 1-14.

[10]Heike B, Bhanu S, Wolfram D, Georg P, Klaus S O, Reiner U J. α-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. The Journal of Cell Biology, 2001, 15(4): 637-647.

[11]Zbysek S, Dusan R, Helena R, Martin F. Neutrophil apoptosis during experimentally induced Staphylococcus aureus mastitis. Veterinary Research, 2005, 36: 629-643.

[12]Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E. Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis, 2001, 6: 431-439.

[13]Bayles K W, Wesson C A, Liou L E, Fox L K, Bohach G A, Trumble W R. Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infection and Immunity, 1998, 66(1): 336-342.

[14]Reiter B. Review of nonspecific antimicrobial factors in colostrums. Annales de Recherches Veterinaires, 1978, 9: 205-211.

[15]Lacasse P, Lauzon K, Diarra M S, Petitclerc D. Utilization of lactoferrin to fight antibiotic-resistant mammary gland pathogens. Journal of Animal Science, 2008, 86(13): 66-71.

[16]Susana A G, Sigifredo A G, Quintín R C. Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents, 2009, 33(301): 1-8.

[17]Diarra M S, Petitclerc D, Lacasse P. Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. Journal of Dairy Science, 2002, 85: 1141-1149.

[18]陈建晖, 佟慧丽, 李庆章, 高学军. 奶牛乳腺上皮细胞系的建立. 畜牧兽医学报, 2009, 40(5): 743-747.

Chen J H, Tong H L, Li Q Z, Gao X J. Establishment of dairy cow mammary gland epithelial cell line. Acta Veterinaria et Zootechnica Sinica, 2009, 40(5): 743-747. (in Chinese)

[19]Sordillo L M, Olivera S P, Akers RM. Culture of bovine mammary epithelial cells in D-valine modified medium: Selective removal of contaminating fibroblasts. Cell Biology International Reports, 1988, 12(5): 355-364.

[20]Michael F M. A novel system for mammary epithelial cell culture. Journal of Dairy Science, 1987, 70(9): 1967-1980.

[21]Yang J, Richards J, Guzman R, Imagawa W, Nandi S. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77: 2088-2092.

[22]Stampfer M, Hallowes R C, Hackett A J. Growth of normal human mammary cells in culture. In vitro Celluar and Developmental Biology, 1980, 16(5): 415-425.

[23]Hebert A, Sayasith K, Senechal S, Dubreuil P, Lagace J. Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk. FEMS Microbiology Letters, 2000, 193: 57-62.

[24]Buehring G C. Culture of mammary epithelial cells from bovine milk. Journal of Dairy Science, 1990, 73: 956-963.

[25]崔立莉. 奶牛乳腺上皮细胞体外培养体系的建立及其应用[D]. 乌鲁木齐: 新疆农业大学, 2006.

Cui L L. Establishment and application of the in vitro culture system of bovine mammary epithelial cells[D]. Urumqi: Xinjiang Agricultural University. (in Chinese)

[26]多曙光, 吴应积, 罗奋华, 旭日干. 牛乳腺上皮细胞的分离培养及其生物学特性. 动物学研究, 2006, 27(3): 299-305.

Duo S G, Wu Y Z, Luo F H, Xu R G. Isolation, culture and biological characteristics of bovine mammary epithelial cell. Zoological Research, 2006, 27(3): 299-305. (in Chinese)

[27]Fournier B, Philpott J. Recognition of Staphylococcus aureus by the innate immune system. Clinical Microbiology Reviews, 2005, 18(3): 521-540.

[28]Cohen G M. Caspases: the executioners of apoptosis. Biochemical Journal, 1997, 326: 1-16.

[29]Ashkenazi A, Dixit V M. Death receptors: signaling and modulation. Science, 1998, 281(5381): 1305-1308.

[30]Wesson C A, Deringer J, Liou LE, Bayles K W, Bohach G A, Trumble W R. Apoptosis induced by Staphylococcus aureus in epithelial cells utilizes a mechanism involving caspases 8 and 3. Infection and Immunity, 2000, 68(5): 2998-3001.
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[3] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[4] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[5] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[6] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[7] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
[8] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[9] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[10] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[11] PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296.
[12] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[13] BI ChongLiang,LIU JunJun,WANG Heng,WANG Juan,HAN ZhaoQing,GUAN LiZeng. Effects of Selenium on the Key Factors in Nod2/MAPK/mTORs Signaling Pathways in the bMECs Infected S. aureus [J]. Scientia Agricultura Sinica, 2019, 52(16): 2891-2898.
[14] ShaoFeng DENG,ZuoDong YE,ShuangQi FAN,JinDing CHEN,JingYuan ZHANG,MengJiao ZHU,MingQiu ZHAO. Screen of MicroRNAs in Classical Swine Fever Virus-Infected PK-15 Cells and the Regulation of Virus Replication by miR-214 [J]. Scientia Agricultura Sinica, 2018, 51(21): 4157-4168.
[15] CHEN Lin-lin, HOU Ying, DING Sheng-li, SHI Yan, LI Hong-lian. Cloning and Expression Analysis of Apoptosis-Related Gene FpTatD in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2016, 49(12): 2301-2309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!