Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (10): 2022-2031.doi: 10.3864/j.issn.0578-1752.2013.10.007

• PLANT PROTECTION • Previous Articles     Next Articles

Isolation and Mapping of NBS-LRR Resistance Gene Homology Sequences from Wheat

 SHI  Jing-Dong, ZHANG  Xiao-Juan, HUANG  Li-Li, HAN  De-Jun, KANG  Zhen-Sheng   

  1. 1.College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
    2.College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi
    3.State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2012-12-30 Online:2013-05-15 Published:2013-03-21

Abstract: 【Objective】The objective of this study is to isolate NBS-LRR class resistance gene homology fragments from wheat using homology-based method, and to validate the relationships with wheat stripe rust resistance gene Yr26.【Method】Primers were designed based on the conserved domains of the cloned plant disease resistance genes, and the nested PCR was used. The fragments were localized by Chinese Spring (CS) deletion lines of chromosome 1B, F2:3 populations derived from susceptible cultivar Avocet S and the lines 92R137 carrying Yr26 were used to evaluate the relationship between the isolated RGAs and Yr26. 【Result】Four open-reading resistance gene analogues (RGAs) were obtained, i.e., R105, R181, R326 and R405. The nucleotide sequences of the four RGAs were 369, 589, 528 and 618 bp. Homology research showed that the four fragments had typical conserved regions NBS-LRR, and the nucleotide identity of four fragments was from 24.35% to 38.36%. Only R405 was mapped in the deletion bin C-1BL-0.6-0.32 with Chinese Spring deletion lines and was co-segregated with a F2 population of 196 plants. It was initially hypothesized that the R405 might be the candidate sequence of Yr26.【Conclusion】In this study, four resistance homology fragments were obtained in the near isogenic lines (NILs) Nan137. R405 was mapped in the Yr26 region and co-segregated with Yr26, which provides a good prerequisite for further study.

Key words: common wheat , resistance gene analogs , nested PCR , Yr26 , NBS-LRR

a[1]李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002: 41-50, 164-173.

Li Z Q, Zeng S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002: 41-50, 164-173. (in Chinese)

[2]Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 2004, 88(8): 896-904.

[3]吴立人, 牛永春. 我国小麦条锈病持续控制的策略. 中国农业科学, 2000, 33(5): 46-53.

Wu L R, Niu Y C. Strategies of sustainable control of wheat stripe rust in China. Scientia Agricultura Sinica, 2000, 33(5): 46-53. (in Chinese)

[4]王友红, 张鹏飞, 陈建群. 植物抗病基因及其作用机理. 植物学通报, 2005, 22(1): 92-99.

Wang Y H, Zhang P F, Chen J Q. Disease resistance genes and mechanisms in plants. Chinese Bulletin of Botany, 2005, 22(1): 92-99. (in Chinese)

[5]刘彦锋, 刘瑛, 李娜. 植物抗病基因工程的研究进展及前景展望. 生物技术通报, 2005(5): 7-10.

Liu Y F, Liu Y, Li N. Research progress and prospects on plant disease-resistance genetic engineering. Biotechnology Bulletin, 2005(5): 7-10. (in Chinese)

[6]Bennett M D, Leitch I J. Nuclear DNA amounts in angiosperms. Annals of Botany, 1995, 76: 113-176.

[7]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Espino J H, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323(5919): 1360-1363.

[8]Fu D L, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X M, Sela  H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature- dependent resistance to wheat stripe rust. Science, 2009, 323(5919): 1357-1360.

[9]刘继梅, 程在全, 杨明挚, 吴成军, 王玲仙, 孙一丁, 黄兴奇. 云南3种野生稻中抗病基因同源序列的克隆及序列分析. 中国农业科学, 2003, 36(3): 273-280.

Liu J M, Cheng Z Q, Yang M Z, Wu C J, Wang L X, Sun Y D, Huang X Q. Cloning and sequence analysis of disease resistance gene analogues from three wild rice species in Yunnan. Scientia Agricultura Sinica, 2003, 36(3): 273-280. (in Chinese)

[10]杨敏娜. 几个小麦重要抗源品种 (系)抗条锈病基因的遗传分析与分子作图[D]. 杨凌: 西北农林科技大学, 2008.

Yang M N. Genetics analysis and molecular mapping of new stripe rust resistance genes in several important wheat cultivars (Lines)[D]. Yangling: Northwest A&F University, 2008. (in Chinese)

[11]Swiderski M R, Birker D, Jones J D. The TIR domain of TIR-NB- LRR resistance proteins is a signaling domain involved in cell death induction. Molecular Plant-Microbe Interactions, 2009, 22(2): 157-165.

[12]Kleinhofs A, Brueggeman R, Nirmala J, Zhang L, Mirlohi A, Druka A, Rostoks N, Steffenson B J. Barley stem rust resistance genes: structure and function. The Plant Genome, 2009, 2(2): 109-120.

[13]Ellis J G, Lawrence G J, Finnegan E J, Anderson P A. Contrasting complexity of two rust resistance loci in flax. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4185-4188.

[14]Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A recepter kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243): 1804-1806.

[15]Lawrence G J, Finnegan E J, Ayliffe M A, Ellis J G. The L6 gene for lax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell, 1995, 7: 1195-1206.

[16]Grant M R, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes R W, Dangl J L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995, 269(5225): 843-846.

[17]Collins N C, Webb C A, Seah S, Ellis J G, Hulbert S H, Pryor A. The isolation and mapping of disease resistance gene analogs in maize. Molecular Plant-Microbe Interactions, 1998, 11(10): 968-978.

[18]Collins N C, Park R, Spielmeyer W, Ellis J, Pryor A J. Resistance gene analogs in barley and their relationship to rust resistance genes. Genome, 2001, 44(3): 375-381.

[19]Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 15253-15258.

[20]齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君, 段霞渝, 周益林. 小麦白粉病新抗源-基因Pm21. 作物学报, 1995, 21(3): 257-262.

Qi L L, Chen P D, Liu D J, Zhou B, Zhang S Z, Sheng B Q, Xiang Q J, Duan X Y, Zhou Y L. A new powdery mildew resistance gene Pm21 source. Acta Agronamica Sinica, 1995(3): 257-262. (in Chinese)

[21]Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 2001, 120: 219-226.

[22]Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2008, 159: 359-366.

[23]陈佩度, 周波, 齐莉莉, 刘大钧. 用分子原位杂交鉴定小麦-簇毛麦双倍体、附加系、代换系和易位系. 遗传学报, 1995, 22(5): 380-386.

Chen P D, Zhou B, Qi L L, Liu D J. Identification of wheat-Haynaldia villosa amphiploid, addition, substitution and translocation lines by in situ hybridization using biotin-labelled genomic DNA as a probe. Acta Genetica Sinica, 1995, 22(5): 380-386. (in Chinese)

[24]高胜国. 南农92R系统白粉病抗源多抗性鉴定及抗条锈性遗传分析. 作物学报, 1999, 25(3): 389-390.

Gao S G. Identification and analysis of resistance of NAU 92R wheat lines. Acta Agronamica Sinica, 1999, 25(3): 389-390. (in Chinese)

[25]黄光永, 庞启华, 周强, 陶军, 余敖. 小麦条锈病新抗源92R149的初步利用和评价. 麦类作物学报, 2000, 20(1): 91-93.

Huang G Y, Pang Q H, Zhou Q, Tao J, Yu A. Evaluation and utilization of a new stripe rust-resistant wheat germplasm 92R149. Journal of Triticeae Crops, 2000, 20(1): 91-93. (in Chinese)

[26]Cao A Z, Xing L P, Wang X Y, Yang X M, Wang W, Sun Y L, Qian C, Ni J L, Chen Y P, Liu D J, Wang X, Chen P D. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19): 7727-7732.

[27]Mclntosh R A, Wellings C R, Park R F. Wheat Rust: an Atlas of Resistance Genes. CSIRO: Sydney Publications, 1995.

[28]Song W N, Ko L, Henry R J. Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theoretical and Applied Genetics, 1994, 89: 509-513.

[29]Song W N, Langridge P. Identification and mapping polymorphism in cereals based on polymerase chain reaction. Theoretical and Applied Genetics, 1991, 82: 209-216.

[30]王海燕, 杨文香, 刘大群. 小麦NBS-LRR类抗病基因同源序列的分离与鉴定. 中国农业科学, 2006, 39(8): 1558-1564.

Wang H Y, Yang W X, Liu D Q. Isolation and characterization of NBS-LRR resistance gene homology sequences from Wheat. Scientia Agricultura Sinica, 2006, 39(8): 1558-1564. (in Chinese)

[31]Dangl J L, Jones J D. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411: 826-833.

[32]Aarts M G M, Hekkert B L, Holub E B, Beynon J L, Stiekema W J, Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 1998, 11(4): 251-258.

[33]Joshi R K, Nayak S. Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. Genetics and Molecular Research, 2011, 10(4): 2637-2652.

[34]McIntyre C L, Hermann S M, Casu R E, Knight D, Drenth J, Tao Y, Brumbley S M, Godwin I D, Williams S, Smith G R, Manners J M. Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theoretical and Applied Genetics, 2004, 109: 875-883.

[35]Yu Y G, Buss G R, Saghai-Maroof M A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-banding site. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(21): 11751-11756.

[36]Leister D, Ballvora A, Salamini F, Gebhardt C. A PCR−based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14: 421-429.

[37]韩德俊, 王琪琳, 张立, 魏国荣, 曾庆东, 赵杰, 王晓杰, 黄丽丽, 康振生. “西北-华北-长江中下游”条锈病流行区系当前小麦品种 (系)抗条锈病性评价. 中国农业科学, 2010, 43(14): 2889-2896.

Han D J, Wang Q L, Zhang L, Wei G R, Zeng Q D, Zhao J, Wang X J, Huang L L, Kang Z S. Evaluation of resistance of current wheat cultivars to stripe rust in Northwest China, North China and the Middle and lower reaches of Changjiang River epidemic area. Scientia Agricultura Sinica, 2010, 43(14): 2889-2896. (in Chinese)
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[3] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[4] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[5] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[6] YANG YanHui,MA Xiao,ZHANG ZiShan,GUO Jun,LI YueNan,LIANG Ying,SONG JianMin,ZHAO ShiJie. Effects of Drought Stress on Photosynthetic Characteristics of Wheat Near-Isogenic Lines with Different Wax Contents [J]. Scientia Agricultura Sinica, 2018, 51(22): 4241-4251.
[7] ZHAN ShuaiShuai, BAI Lu, XIE Lei, XIA XianChun, REN Yi, Lü WenJuan, QU YanYing, GENG HongWei. Arabinoxylan Feruloyl Transferase Gene Cloning and Development of Functional Markers in Common Wheat [J]. Scientia Agricultura Sinica, 2018, 51(19): 3639-3650.
[8] ZHANG FuYan, CHEN Feng, CHENG ZhongJie, YANG BaoAn, FAN JiaLin, CHEN XiaoJie, ZHANG JianWei, CHEN YunTang, CUI Long. Effects of TaLox-B Alleles on Lipoxygenase Activity and Flour Color in Wheats [J]. Scientia Agricultura Sinica, 2017, 50(8): 1370-1377.
[9] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[10] SHI Jia, ZHAI ShengNan, LIU JinDong, WEI JingXin, BAI Lu, GAO WenWei, WEN WeiE, HE ZhongHu, XIA XianChun, GENG HongWei. Genome-Wide Association Study of Grain Peroxidase Activity in Common Wheat [J]. Scientia Agricultura Sinica, 2017, 50(21): 4212-4227.
[11] LIU XinLun, WANG Chao, NIU LiHua, LIU ZhiLi, ZHANG LuDe, CHEN ChunHuan, ZHANG RongQi, ZHANG Hong, WANG ChangYou, WANG YaJuan, TIAN ZengRong, JI WanQuan. Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid [J]. Scientia Agricultura Sinica, 2017, 50(20): 3908-3917.
[12] WANG Kun-yang, ZHANG Wei, ZHANG Shuang-xi, LIU Hong-wei, WANG Ke, DU Li-pu, LIN Zhi-shan, YE Xing-guo. Effect of Chemical Hybridization Agent SQ-1 and Arabinogalactan Proteins on the Embryos Obtaining in Wheat Intervarietal and Wild Crosses [J]. Scientia Agricultura Sinica, 2016, 49(24): 4824-4832.
[13] ZHANG Yong, HAO Yuan-feng, ZHANG Yan, HE Xin-yao, XIA Xian-chun, HE Zhong-hu. Progress in Research on Genetic Improvement of Nutrition and Health Qualities in Wheat [J]. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298.
[14] XIE Li-xue, ZHENG Shan, ZHANG Li-jie, ZHANG Xiao-yan, LI Tao. Development of IC-RT-nested PCR for the Detection of Blueberry shock virus [J]. Scientia Agricultura Sinica, 2016, 49(22): 4366-4374.
[15] HU Xue-xu, SUN Li-juan, ZHOU Gui-ying, WU Li-na, LU Wei, LI Wei-xi, WANG Shuang, YANG Xiu-lan, SONG Jing-ke, WANG Bu-jun. Variations of Wheat Quality in China From 2006 to 2015 [J]. Scientia Agricultura Sinica, 2016, 49(16): 3063-3072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!