Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (21): 4343-4350.doi: 10.3864/j.issn.0578-1752.2012.21.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Arabidopsis TUA2 Gene Mediates Seed Germination Under ABA Stress

 LIU  Hai-Hao, WU  Li-Zhu, YUE  Zhi-Liang, PAN  Yan-Yun   

  1. 1.河北农业大学生命科学学院,河北保定 071000
  • Received:2012-06-11 Online:2012-11-01 Published:2012-08-28

Abstract: 【Objective】This study would characterize the TUA2 gene involving in seed germination under ABA stress in Arabidopsis by the method of reverse genetics. 【Method】 The Arabidopsis T-DNA inserted into TUA2 gene mutants were obtained from ABRC. The T-DNA insertion sites of mutants were analyzed by Tail PCR. Over-expression constructs of TUA2 were introduced into Arabidopsis by an Agrobacterium-mediated method. RT-PCR was used to detect TUA2 and ABA-responsive genes accumulation in mutants and transgenic plants. The seed germination of transgenic and mutant lines was tested on MS medium with different concentrations of ABA. 【Result】 The T-DNA was inserted into the gene promoter region in mutants tua2-1 and tua2-2, and led to the increasing accumulation of the TUA2. In the medium of MS/0.8 μmol•L-1 ABA, the seed germination rate of wild type was 76% after five days, whereas all the TUA2 over-expression lines, mutants and transgenic plants, were 6%-18%. The expression of ABII, HAB and P5CS was induced by ABA in wild type, but not in mutants and transgenics. 【Conclusion】 The T-DNA insertion of the mutants tua2-1 and tua2-2 resulted in the increasing expression of TUA2 gene. The TUA2 gene might be involved in plant responses to ABA by mediating the transcription of ABA-responsive genes.

Key words: Arabidopsis thaliana, seed germination, TUA2, ABA

[1]Gilroyr S, Trewavasr A. Signal processing and transduction in plant cells: The end of the beginning? Nature Reviews Molecular Cell Biology, 2001, 2(4): 307-314.

[2]Wasteneysr G O, Galwayr M E. Remodeling the cytoskeleton for growth and form: An overview with some new views. Annual Review of Plant Biology, 2003, 54: 691-722.

[3]Himmelspachr R, Wymerr C L, Lloydr C W, Nickr P. Gravity-induced reorientation of cortical microtubules observed in vivo. The Plant Journal, 1999, 18(4): 449-453.

[4]Mathurr J, Chuar N H. Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. The Plant Cell, 2000, 12(4): 465-477.

[5]Wang Q Y, Nick P. Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant and Cell Physiology, 2001, 42: 999-1005.

[6]Abdrakhamanova A, Wang Q Y, Khokhlova L, Nick P. Is microtubule disassembly a trigger for cold acclimation? Plant and Cell Physiology, 2003, 44: 676-686.

[7]Van Bruaene N, Joss G, Van Oostveldt P, Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiology, 2004, 136(4): 3905-3919.

[8]Wang C, Li J, Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant and Cell Physiology, 2007, 48(11): 1534-1547.

[9]Hamant O, Heisler M G, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz E M, Couder Y, Traas J. Developmental patterning by mechanical signals in Arabidopsis. Science, 2008, 322: 1650-1655.

[10]Wang C, Zhang L J, Huang R D. Cytoskeleton and plant salt stress tolerance. Plant Signaling and Behavior, 2011, 6(1): 29-31.

[11]Wang S, Kurepa J, Hashimoto T, Smalle J A. Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. The Plant Cell, 2011, 23(9): 3412-3427.

[12]Smertenko P, Dráber Viklický V, Opatrný Z. Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant, Cell and Environment, 1997, 20: 1534-1542.

[13]Kopczak S D, Haas N A, Hussey P J, Silflow C D, Snustad D P. The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. The Plant Cell, 1992, 4(5): 539-547.

[14]Thuleau P, Schroeder J I, Ranjeva R. Recent advances in the regulation of plant calcium channels: Evidence for regulation by G-proteins, the cytoskeleton and second messengers. Current Opinion in Plant Biology, 1998, 1(5): 424-427.

[15]Lau O S, Deng X W. Plant hormone signaling lightens up: Integrators of light and hormones. Current Opinion in Plant Biology, 2010, 13(5): 571-577.

[16]Gallardo K, Job C, Groot S P, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiology, 2002, 129(2): 823-837.

[17]Li F, Wu X, Tsang E, Cutler A J. Transcriptional profiling of imbibed Brassica napus seed. Genomics, 2005, 86(6): 718-730.

[18]Jiang Y, Yang B, Harris N S. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007, 58(13): 3591-3607.

[19]Testerink C, Dekker H L, Lim Z Y, Johns M K, Holmes A B, Koster C G, Ktistakis N T, Munnik T. Isolation and identification of phosphatidic acid targets from plants. The Plant Journal, 2004, 39(4): 527-536.

[20]Dixon D P, Skipsey M, Grundy N M, Edwards R. Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiology, 2005, 138(4): 2233-2244.

[21]Ditt R F, Kerr K F, de Figueiredo P, Delrow J, Comai L, Nester E W. The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Molecular Plant-microbe Interactions, 2006, 19(6): 665-681.

[22]Tang W, Deng Z, Oses-Prieto J A, Suzuki N, Zhu S, Zhang X, Burlingame A L, Wang Z Y. Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Molecular and Cellular Proteomics, 2008, 7: 728-738.

[23]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19(6): 1349.

[24]Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal, 1995, 8(3): 457-463.

[25]Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez P L. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. The Plant Cell, 2008, 20(11): 2972-2988.

[26]刘海浩, 吴立柱, 潘延云. 拟南芥微管蛋白TUA2基因表达载体的构建及亚细胞定位. 河北农业大学学报, 2011, 34(2): 40-42.

Liu H H, Wu L Z, Pan Y Y. Construction of expression vector and subcellular localization of microtubulin TUA2 gene from Arabidopsis thaliana. Journal of Agricultural University of Hebei, 2011, 34(2): 40-42. (in Chinese)

[27]赵  霞, 周  波, 李玉花. T-DNA插入突变在植物功能基因组学中的应用. 生物技术通讯, 2009, 20(6): 880-884.

Zhao X, Zhou B, Li Y H. Application of T-DNA insertion mutagenesis in functional genomics of plant. Letters in Biotechnology, 2009, 20(6): 880-884. (in Chinese)

[28]Carpenter J L, Kopczak S D, Snustad D P, Silflow C D. Semi-constitutive expression of an Arabidopsis thaliana alpha-tubulin gene. Plant Molecular Biology, 1993, 21(5): 937-942.

[29]Uribe X, Torres M A, Capellades M, Puigdomenech P, Rigau J. Maize alpha-tubulin genes are expressed according to specific patterns of cell differentiation. Plant Molecular Biology, 1998, 37(6): 1069-1078.

[30]Halliday K J, Hudson M, Ni M, Qin M, Quail P H. poc1: An Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proceedings of the National Academy of Sciences of the USA, 1999, 96(10): 5832-5837.

[31]Himmelbach A, Yang Y, Grill E, Relay and control of abscisic acid signaling. Current Opinion in Plant Biology, 2003, 6(5): 470-479.

[32]Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal, 2001, 25(3): 295-303.

[33]Kuhn J M, Boisson-Dernier A, Dizon M B, Maktabi M H, Schroeder J I. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiology, 2006, 140(1): 127-139.

[34]Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. ABA-hypersensitive germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. The Plant Journal, 2007, 50(6): 935-949.

[35]Rubio S, Rodrigues A, Saez A, Dizon M B, Galle A, Kim T H, Santiago J, Flexas J, Schroeder J I, Rodriguez P L. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiology, 2009, 150(3): 1345-1355.

[36]Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia M P, Nicolas C, Lorenzo O, Rodriguez P L. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 2004, 37(3): 354-369.

[37]Saez A, Robert N, Maktabi M H, Schroeder J I, Serrano R, Rodriguez P L. Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiology, 2006, 141(4): 1389-1399.

[38]Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Molecular Genetics and Genomics, 1993, 238(1/2): 17-25.

[39]Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez M E. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-microbe Interactions, 2004, 17(4): 343-350.
[1] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[2] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[3] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[4] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[5] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[6] HE YunChuan,WANG XinPu,HONG Bo,ZHANG TingTing,ZHOU XueFei,JIA YanXia. Effects of Four Insecticides LC25 on Feeding Behavior of Q-Type Bemisia tabaci Adults [J]. Scientia Agricultura Sinica, 2021, 54(2): 324-333.
[7] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[8] ZHAO FuMei,WANG Shuang,TIAN YuTing,QIAO Qi,WANG YongJiang,ZHANG DeSheng,ZHANG ZhenChen. An Investigation into Key Factors Influencing the Occurrence of Virus Disease in Sweet Potato [J]. Scientia Agricultura Sinica, 2021, 54(15): 3232-3240.
[9] LI Xin,ZHANG WenJu,WU Lei,REN Yi,ZHANG JunDa,XU MingGang. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation [J]. Scientia Agricultura Sinica, 2021, 54(14): 3043-3056.
[10] ZHAO Xue,WANG Feng,WANG WenJing,LIU XiaoFeng,BIAN ShiQuan,LIU YanHua,LIU XinMin,DU YongMei,ZHANG ZhongFeng,ZHANG HongBo. Splicing Property Analyses of the NRSE1 Element from Tobacco PR3b mRNA After Fusion Expression with GUS Gene [J]. Scientia Agricultura Sinica, 2020, 53(8): 1524-1531.
[11] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[12] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
[13] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[14] LI JianXin,XI MengHui,ZHANG JiaWei,XI MengJuan,TIAN Ding,LU YiZhe,CHEN XiaoYang,LI WeiHua,ZHANG XueHai,TANG JiHua. Construction and Utilization of Database for Chinese Maize Varieties and Their Genealogy [J]. Scientia Agricultura Sinica, 2020, 53(16): 3404-3411.
[15] YU AiLi,ZHAO JinFeng,CHENG Kai,WANG ZhenHua,ZHANG Peng,LIU Xin,TIAN Gang,ZHAO TaiCun,WANG YuWen. Screening and Analysis of Key Metabolic Pathways in Foxtail Millet During Different Water Uptake Phases of Germination [J]. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!