Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (2): 391-398.doi: 10.3864/j.issn.0578-1752.2012.02.023

• VETERINARY SCIENCE • Previous Articles     Next Articles

Effect and Mechanism of Kisspeptin-10 on Progesterone Secretion in Granulosa Cells of Chicken F1 Follicles Cultured in Serum-Free Medium

 XIAO  Yun-Qi, HUANG  Yan-Bing, WU  Jing, NI  Ying-Dong, ZHAO  Ru-Qian   

  1. 1.南京农业大学动物医学院,南京 210095
  • Received:2011-03-09 Online:2012-01-15 Published:2011-12-07

Abstract: 【Objective】The objective of this study was to investigate the effect and mechanism of Kisspeptin-10 (Kp-10) on progesterone (P4) secretion in cultured granulose cells of chicken follicles.【Method】Two-hundred-day ISA laying hens were sacrificed before the expected time to ovulation. The follicles (F1) were collected and the granulosa cells were isolated and cultured in serum medium for one day, and then cultured in serum-free medium. After one day stabilization in serum-free medium, the granulosa cells were treated with different concentrations of Kp-10 alone or in combination with U73122, EGTA and/or Ca2+ for 24 h, respectively. The media was collected for measuring P4 by radioimmunoassay (RIA).【Result】The cells were determined to be kisspeptin-positive expression with specific antibody against Kp-10. After 24 h treatment, Kp-10 significantly increased the viability of granulosa cells as well as P4 secretion (P<0.05). U73122 (PLC inhibitor) at 0.5 μmol•L-1 and 2 μmol•L-1 blocked the effect of Kp-10 on stimulating P4 secretion markedly (P<0.05), while 2 μmol•L-1 U73122 had no effect on P4 secretion. Verapamil (the calcium channel blocker) suppressed P4 secretion in a dose-dependent manner, reaching the statistical significance at 100 μmol•L-1 dosage (P<0.05). Under low dosage of Verapamil (1 μmol•L-1) background, 100 nmol•L-1 Kp-10 can still significantly increase P4 secretion (P<0.05). However, under higher dosage of Verapamil (10 or 100 μmol•L-1), 100 nmol•L-1 Kp-10 could not reverse the significant decrease of P4 secretion by Verapamil in medium of in vitro cultured granulosa cells. Flow cytometric analysis showed that the level of intracellular Ca2+ was consistent with progesterone secretion. P4 secretion induced by Kp-10 was decreased significantly in the presence of EGTA (1 and 5 mmol•L-1), while this effect was converted by adding 1.5 mmol•L-1 Ca2+ (P<0.05). 【Conclusion】 Kisspeptin-10 increase P4 secretion in granulosa cells of ISA hens' follicles cultrured in serum-free medium, and the mechanism might be associated with intracellular Ca2+ concentration.

Key words: kisspeptin-10, Ca2+, progesterone, granulosa cells, ISA Brown hens

[1]Messager S, Chatzidaki E E, Ma D, Hendrick A G, Zahn D, Dixon J, Thresher R R, Malinge I, Lomet D, Carlton M B, Colledge W H, Caraty A, Aparicio S A. Kisspeptin directly stimulates gonadotropin- releasing hormone release Via G protein-coupled receptor 54. Proceedings of the National Academy of Sciences, USA. 2005, 102(5):1761-1766.

[2]Colin J. Saldanha B J W, Gregory S. Fraley neurons that Co-Localize aromatase- and kisspeptin-like immunoreactivity may regulate the Hpg Axis of the mallard drake (Anas Platyrhynchos). General and Comparative Endocrinology,  2010, 166(3):606-613.

[3]Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden J M, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann S N, Vassart G, Parmentier M. The metastasis suppressor gene Kiss-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor Gpr54. Journal of Biological Chemistry, 2001, 276(37): 34631-34636.

[4]Funes S, Hedrick J A, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma F J, Gustafson E L. The kiss-1 receptor Gpr54 is essential for the development of the murine reproductive system. Biochemical and Biophysical Research Communications, 2003, 312(4):1357-1363.

[5]d'Anglemont de Tassigny X, Fagg L A, Dixon J P, Day K, Leitch H G, Hendrick A G, Zahn D, Franceschini I, Caraty A, Carlton M B, Aparicio S A, Colledge W H. Hypogonadotropic hypogonadism in mice lacking a functional kiss-1 gene. Proceedings of the National Academy of Sciences, 2007, 104(25):10714-10719.

[6]Seminara S B, Messager S, Chatzidaki E E, Thresher R R, Acierno J S, Jr Shagoury J K, Bo-Abbas Y, Kuohung W, Schwinof K M, Hendrick A G, Zahn D, Dixon J, Kaiser U B, Slaugenhaupt S A, Gusella J F, O'Rahilly S, Carlton M B, Crowley W F, Jr Aparicio S A, Colledge W H. The Gpr54 gene as a regulator of puberty.  New England Journal of Medicine,  2003, 349(17):1614-1627.

[7]Gottsch M L, Cunningham M J, Smith J T, Popa S M, Acohido B V, Crowley W F, Seminara S, Clifton D K, Steiner R A. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology,  2004, 145(9):4073-4077.

[8]Smith J T, Popa S M, Clifton D K, Hoffman G E, Steiner R A. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. Journal of Neuroscience, 2006, 26(25):6687-6694.

[9]Richard N, Galmiche G, Corvaisier S, Caraty A, Kottler M L. Kiss-1 and Gpr54 genes are Co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin- releasing hormone. Journal of Neuroendocrinology, 2008, 20(3): 381-393.

[10]Gaytan F, Gaytan M, Castellano J M, Romero M, Roa J, Aparicio B, Garrido N, Sanchez-Criado J E, Millar R P, Pellicer A, Fraser H M, Tena-Sempere M. Kiss-1 in the mammalian ovary: Distribution of kisspeptin in human and marmoset and alterations in Kiss-1 mrna levels in a rat model of ovulatory dysfunction.  American Journal of Physiology-Endocrinology and Metabolism, 2009, 296(3): 520-531.

[11]Castellano J M, Gaytan M, Roa J, Vigo E, Navarro V M, Bellido C, Dieguez C, Aguilar E, Sanchez-Criado J E, Pellicer A, Pinilla L, Gaytan F, Tena-Sempere M. Expression of Kiss-1 in rat ovary: Putative local regulator of ovulation? Endocrinology, 2006, 147(10): 4852-4862.

[12]Muir A I, Chamberlain L, Elshourbagy N A, Michalovich D, Moore D J, Calamari A, Szekeres P G, Sarau H M, Chambers J K, Murdock P, Steplewski K, Shabon U, Miller J E, Middleton S E, Darker J G, Larminie C G, Wilson S, Bergsma D J, Emson P, Faull R, Philpott K L, Harrison D C. Axor12, a novel human G protein-coupled receptor, activated by the peptide Kiss-1. Journal of Biological Chemistry, 2001, 276(31):28969-28975.

[13]Smith J T, Cunningham M J, Rissman E F, Clifton D K, Steiner R A. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology, 2005, 146(9):3686-3692.

[14]Dungan H M, Clifton D K, Steiner R A. Minireview: Kisspeptin neurons as central processors in the regulation of gonadotropin- releasing hormone secretion. Endocrinology, 2006, 147(3): 1154-1158.

[15]Colledge W H. Gpr54 and puberty. Trends in Endocrinology and Metabolism, 2004, 15(9):448-453.

[16]Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene Kiss-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411(6837):613-617.

[17]Navarro V M, Castellano J M, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez M J, Barreiro M L, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of Kiss-1 peptide, the natural ligand of Gpr54. Endocrinology, 2005, 146(1):156-163.

[18]Shahab M, Mastronardi C, Seminara S B, Crowley W F, Ojeda S R, Plant T M. Increased hypothalamic Gpr54 signaling: A potential mechanism for initiation of puberty in primates. Proceedings of the National Academy of Sciences, 2005, 102(6):2129-2134.

[19]Castellano J M, Navarro V M, Fernandez-Fernandez R, Castano J P, Malagon M M, Aguilar E, Dieguez C, Magni P, Pinilla L, Tena-Sempere M. Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Molecular and Cellular Endocrinology,  2006, 257-258:75-83.

[20]Liu X, Lee K, Herbison A E. Kisspeptin excites gonadotropin- releasing hormone neurons through a phospholipase C/Calcium- dependent pathway regulating multiple Ion channels. Endocrinology, 2008, 149(9):4605-4614.

[21]Zhang C, Roepke T A, Kelly M J, Ronnekleiv O K. Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of Trpc-Like cationic channels. Journal of Neuroscience, 2008, 28(17):4423-4434.

[22]Roa J, Castellano J M, Navarro V M, Handelsman D J, Pinilla L, Tena-Sempere M. Kisspeptins and the control of gonadotropin secretion in male and female rodents. Peptides,  2009, 30(1):57-66.

[23]张肇和. 钙离子通道的基本概念及钙通道阻滞剂. 中国实用儿科杂志, 1993, 8(4):241-242.

Zhang Z H. The concept of calcium channel and blockers. Chinese Journal of Practical Pediatrics, 1993, 8(4):241-242. (in Chinese)

[24]Hinkle P M, Jackson A E, Thompson T M, Zavacki A M, Coppola D A, Bancroft C. Calcium channel agonists and antagonists: effects of chronic treatment on pituitary prolactin synthesis and intracellular calcium. Molecular Endocrinology,  1988,  2(11):1132-1138.

[25]Liu X, Qin D, Cui Y, Chen L, Li H, Chen Z, Gao L, Li Y, Liu J. The effect of galcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells.  Reproductive Biology and Endocrinology,  2010, 8(1):32.

[26]Levorse J M, Tilly J L, Johnson A L. Role of calcium in the regulation of theca cell androstenedione production in the domestic hen. Journal of Reproduction and Fertility, 1991,  92(1):159-167.

[27]汪琳仙,李莹辉,王海滨. Gnrh促鸡卵泡颗粒细胞孕酮合成功能作用机制的研究. 畜牧兽医学报, 1999, 30(3):200-205.

Wang L X, Li Y H, Wang H B. Mechanism of gonadotropin releasing hormone stimulating progesterone production in cultured granulosa cells of chicken follicles. Chinese Journal of Animal and Veterinary Sciences, 1999, 30(3):200-205. (in Chinese)
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[3] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[4] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[5] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[6] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[7] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[8] ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070.
[9] LU SiYu,HE YingTing,ZHOU XiaoFeng,XIN XiaoPing,ZHANG AiLing,YUAN XiaoLong,ZHANG Zhe,LI JiaQi. Effect of KISS1 Interference on the Function of Porcine Granulosa Cells in Porcine Ovary [J]. Scientia Agricultura Sinica, 2020, 53(23): 4940-4949.
[10] ZHAO YuanYuan,LI PengFei,XU QinZhi,AN QingMing,MENG JinZhu. Screening and Analysis of Follicular Development Related Genes in Goat [J]. Scientia Agricultura Sinica, 2020, 53(17): 3597-3605.
[11] XIN XiaoPing, WANG JiaYing, ZHANG AiLing, ZHONG YuYi, HE YingTing, CHEN ZanMou, ZHANG Zhe, ZHANG Hao, LI JiaQi, YUAN XiaoLong. CEBPα and p53 Regulate Kiss1 Gene Expression in Porcine Ovary Granulosa Cells [J]. Scientia Agricultura Sinica, 2019, 52(9): 1624-1634.
[12] JinBi ZHANG, Wang YAO, ZengXiang PAN, HongLin LIU. Effects of FSH Treatment on Steroidogenic Enzymes Expression and Histone H3 Modification in Pig Granulosa Cells [J]. Scientia Agricultura Sinica, 2018, 51(18): 3582-3590.
[13] HUANG Cui-Xiang, XIA Yan-Fei, WANG Rong, ZHANG Wen-Hui, HAN Tian-Tian, SHEN Xiang. Effects of Phenanthrene and Pyrene on Ca2+, K+ and H+ Liquidity in Root Hair Cells of Malus hupehensis [J]. Scientia Agricultura Sinica, 2013, 46(20): 4321-4327.
[14] QIN Jian, DU Juan, YANG Ya-Qun, DU Rong. Bioinformatic Analysis of Myostatin Gene 5′ Regulatory Region from Sheep and Effect of Progesterone on the Activity of the Regulatory Region [J]. Scientia Agricultura Sinica, 2012, 45(9): 1814-1825.
[15] WANG Ming-Xia, ZHOU Zhi-Feng, YUAN Ling, HUANG Jian-Guo. Effects of Ca2+ Signal Inhibitors on Oxalate Effluxes by Ectomycorrhizal Fungi Under Aluminum Stress [J]. Scientia Agricultura Sinica, 2012, 45(5): 902-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!