Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (2): 228-238.doi: 10.3864/j.issn.0578-1752.2012.02.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Analysis of the Temporal and Spatial Changes of Photo-thermal Resources in Winter Wheat Growing Regions in China

 WANG  Bin, GU  Yun-Qian, LIU  Xue, LUO  Wei-Hong, DAI  Jian-Feng, ZHANG  Wei, QI  Chun-Jie   

  1. 1.南京农业大学农学院,南京 210095
  • Received:2011-07-04 Online:2012-01-15 Published:2011-09-27

Abstract: 【Objective】To identify the temporal and spatial changes of photo-thermal resources during the growing season and key development stages of winter wheat in China so as to mitigate the impacts of climate change on wheat production in China by adjusting cropping system and crop distribution according to changing trends of photo-thermal resources.【Method】Daily data of temperature and sunshine hours of 47 years (1961-2007) from 264 meteorological stations in the winter wheat growing regions in China were used to calculate daily active temperature (>0℃) and daily total global radiation. The theoretical dates when winter wheat reaches its main development stages were determined based on the accumulated active temperature required by each development stage. Photo-thermal resources (the growth degree days (GDD), the thermal time (TT), the total global radiation, and the product of thermal effectiveness and global radiation (TEP)) for the whole growing season and the key development stages were then calculated. The grid data were obtained by means of inverse distance weight spatial interpolation using ArcGIS (v9.3).【Result】During the 1961-2007, the theoretical sowing date of winter wheat delayed averagely by 0.5 d•10a-1, that of heading and ripening became earlier averagely by 1.6 d•10a-1 and 1.7 d•10a-1, respectively, and the whole growing season was shortened averagely by 2.2 d•10a-1. During winter wheat growing season, the GDD and the total TT increased averagely by 7.8℃•d•10a-1 and 0.6 d•10a-1, respectively, the total global radiation decreased averagely by 39.69 MJ•m-2•10a-1 (by -2.34%•10a-1), and the TEP decreased averagely by 10.18 MJ•m-2•10a-1 (by -1.22%•10a-1). From sowing to heading, the GDD and the total TT increased averagely by 6.2 ℃•d•10a-1 and 0.57 d•10a-1, respectively, the total global radiation decreased averagely by 27.7 MJ•m-2•10a-1 (by -2.72%•10a-1), and the TEP decreased averagely by 5.2 MJ•m-2•10a-1 (by -1.18%•10a-1). From heading to ripening, the GDD and the total TT increased averagely by 1.6 ℃•d•10a-1 and 0.05 d•10a-1, respectively, the total global radiation decreased averagely by 12 MJ•m-2•10a-1 (by -1.78%•10a-1), and the TEP decreased averagely by 4.97 MJ•m-2•10a-1 (by -1.26%•10a-1).【Conclusion】During the 1961-2007, in the North region and in Mid-eastern Shandong Province of Huang-Huai region for winter wheat growing, the decreases of both TEP and the length of wheat growing season indicate that changes in photo-thermal resources had negative effects on winter wheat potential productivity in these regions. In the rest regions (the Southwest, the Middle and Lower Reaches of the Yangtze River, the Huang-Huai, and the South) for winter wheat growing, the increased TEP had a positive impact on winter wheat potential productivity whereas the shortened growing season had a negative impact on winter wheat potential productivity, hence, the impacts of changes in photo-thermal resources on winter wheat potential productivity is positive or negative can only be determined by resorting to quantitative analysis using crop growth simulation models.

Key words: winter wheat, development stage, GDD, photo-thermal resources, photo-thermal potential productivity

[1]马洁华, 刘 园, 杨晓光, 王文峰, 薛昌颖, 张晓煜. 全球气候变化背景下华北平原气候资源变化趋势. 生态学报, 2010,30(14): 3818-3827.

Ma J H, Liu Y, Yang X G, Wang W F, Xue C Y, Zhang X Y. Characteristics of climate resources under global climate change in the North China Plain. Acta Ecologica Sinica, 2010, 30(14): 3818-3827. (in Chinese)

[2]赵俊芳, 郭建平, 马玉平, 俄有浩, 王培娟, 邬定荣. 气候变化背景下我国农业热量资源的变化趋势及适应对策. 应用生态学报, 2010, 21(11): 2922-2930.

Zhao J F, Guo J P, Ma Y P, E Y H, Wang P J, Wu D R. Change trends of China agricultural thermal resources under climate change and related adaptation countermeasures. Chinese Journal of Applied Ecology, 2010, 21(11): 2922-2930. (in Chinese)

[3]李 勇, 杨晓光, 王文峰, 刘志娟. 气候变化背景下中国农业气候资源变化Ⅰ.华南地区农业气候资源时空变化特征. 应用生态学报, 2010, 21(10): 2605-2614.

Li Y, Yang X G, Wang W F, Liu Z J. Changes of China agricultural climate resources under the background of climate changeⅠ.Spatiotemporal change characteristics of agricultural climate resources in South China. Chinese Journal of Applied Ecology, 2010, 21(10): 2605-2614. (in Chinese)

[4]李 勇, 杨晓光, 代姝玮, 王文峰. 长江中下游地区农业气候资源时空变化特征. 应用生态学报, 2010, 21(11): 2912- 2921.

Li Y, Yang X G, Dai S W, Wang W F. Spatiotemporal change      characteristics of agricultural climate resources in middle and lower reaches of Yangtze River. ChineseJournal of Applied Ecology, 2010, 21(11): 2912-2921. (in Chinese)

[5]代姝玮, 杨晓光, 赵 孟, 李 勇, 王文峰, 刘志娟. 气候变化背景下中国农业气候资源变化Ⅱ.西南地区农业气候资源时空变化特征. 应用生态学报, 2011, 22(2): 442-452.

Dai S W, Yang X G, Zhao M, Li Y, Wang W F, Liu Z J. Changes of China agricultural climate resources under the background of climate changeⅡ.Spatiotemporal change characteristics of agricultural climate resources in Southwest China. Chinese Journal of Applied Ecology, 2011, 22(2): 442-452. (in Chinese)

[6]屈振江. 陕西农作物生育期热量资源对气候变化的响应研究. 干旱区资源与环境, 2010, 24(1): 75-79.

Qu Z J. Variation of heat resources in crops growing season and its response to climate change in Shaanxi. Journal of Arid Land Resources and Environment, 2010, 24(1): 75-79. (in Chinese)

[7]谷永利, 林 艳, 李元华. 气温变化对河北省冬小麦主要发育期的影响分析. 干旱区资源与环境, 2007, 21(12): 141-145.

Gu Y L, Lin Y, Li Y H. The analysis on the effect of temperature fluctuation on primary growing periods of winter wheat in Hebei. Journal of Arid Land Resources and Environment, 2007, 21(12): 141-145. (in Chinese)

[8]Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology, 2006, 138: 82-92.

[9]Chmielewski F M., Müller A, Bruns E. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology, 2004, 121: 69-78.

[10]García-Mozo H, Mestre A, Galán C. Phenological trends in southern Spain: A response to climate change. Agricultural and Forest Meteorology, 2010, 150: 575-580.

[11]Estrella N, Sparks T H, Menzel A. Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 2007, 13: 173-174.

[12]赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30(5): 886-895.

Zhao G C. Study on Chinese wheat planting regionalization(Ⅰ). Journal of Triticeae Crops, 2010, 30(5): 886-895. (in Chinese)

[13]苏高利, 柳钦火, 邓芳萍, 辛晓洲. 基于LS2SVM 方法的晴空逐时太阳辐射模型. 北京师范大学学报:自然科学版, 2007, 43(3): 274-278.

Su G L, Liu Q H, Deng F P, Xin X Z. The hourly global clear sky radiation model based on the leas squares support vector machines. Journal of Beijing Normal University: Natural Science, 2007, 43(3): 274-278. (in Chinese)

[14]Goudriaan J, Van Laar H H. Modelling Potential Crop Growth Processes: Textbook With Exercises. Dordrecht: Kluwer Academic Publishers, 1994: 30-31.

[15]倪纪恒, 罗卫红, 李永秀, 戴剑锋, 金 亮, 徐国彬, 陈永山, 陈春宏. 温室番茄干物质分配与产量的模拟分析. 应用生态学报, 2006, 17(5):811-816.

Ni J H, Luo W H, Li Y X, Dai J F, Jin L, Xu G B, Chen Y S, Chen C H. Simulation of greenhouse tomato dry matter partitioning and yield prediction. Chinese Journal of Applied Ecology, 2006, 17(5): 811-816. (in Chinese)

[16]马鹏里, 蒲金涌, 赵春雨, 王位泰. 光温因子对大田冬小麦累积生物量的影响. 应用生态学报, 2010, 21(5): 1270-1276.

Ma P L, Pu J Y, Zhao C Y, Wang W T. Influence of light and temperature factors on biomass accumulation of winter wheat in field. Chinese Journal of Applied Ecology, 2010, 21(5): 1270-1276. (in Chinese)

[17]信廼诠. 气候变化与作物产量. 北京: 中国农业科技出版社, 1992:152-153.

Xin N Q. Climate Change and Crop Production. Beijing: China Agricultural Science and Technology Press, 1992: 152-153. (in Chinese)

[18]杨晓光, 于沪宁. 中国气候资源与农业. 北京: 气象出版社, 2006: 95-96.

Yang X G, Yu H N. Climate Resource and Agriculture in China. Beijing: China Meteorological Press, 2006: 95-96. ( in Chinese)

[19]毛振强, 宇振荣, 刘 洪. 冬小麦及其叶片发育积温需求研究. 中国农业大学学报, 2002, 7(5): 14-19.

Mao Z Q, Yu Z R, Liu H. Experimental research on thermal requirement for winter wheat and its leaves. Journal of China Agriculture University, 2002, 7(5): 14-19. (in Chinese)

[20]杨再强, 罗卫红, 陈发棣, 顾俊杰, 李向貌, 丁琦峰, 赵才标, 陆亚凡. 温室标准切花菊发育模型与收获期预测模型研究. 中国农业科学, 2007, 40(6): 1229-1235.

Yang Z Q, Luo W H, Chen F D, Gu J J, Li X M, Ding Q F, Zhao C B, Lu Y F. A simulation model for predicting the development stage and harvesting date of standard cut chrysanthemum in greenhouse. Scientia Agricultura Sinica, 2007, 40(6): 1229-1235. (in Chinese)

[21]柳 芳, 黎贞发. 降水量和积温变化对天津冬小麦产量的影响. 中国农业气象, 2010, 31(3): 431-435.

Liu F, Li Z F. Impacts of precipitation and accumulated temperature on winter wheat yield in Tianjin. Chinese Journal of Agrometeorology, 2010, 31(3): 431-435. (in Chinese)

[22]刘 锋, 孙本普, 李秀云. 夏直播早熟玉米的积温及其在生产中的应用. 山东农业科学, 2010(9): 47-49.

Liu F, Sun B P, Liu X Y. Accumulated temperature of early-maturing summer maize and its application to production. Shandong Agricultural Sciences, 2010(9): 47-49. (in Chinese)

[23]潘旭东, 孙自武, 冯亚静, 刘启斌, 张凤华. 新疆北疆不同积温条件下棉花生育进程及生长解析. 中国农学通报, 2011, 27(5): 274-280.

Pan X D, Sun Z W, Feng Y J, Liu Q B, Zhang F H. Growth stage and growth analysis on cotton with different accumulate temperature in North of Xinjiang. Chinese Agricultural Science Bulletin, 2011, 27(5): 274-280. (in Chinese)

[24]李巧云, 年 力, 刘万代, 李 磊, 周苏玫, 尹 钧. 冬前积温对河南省小麦冬前生长发育的影响. 中国农业气象, 2010, 31(4): 563-569.

Li Q Y, Nian L, Liu W D, Li L, Zhou S M, Yin J. Effects of accumulated temperature before winter on growth and development of wheat in Henan province. Chinese Journal of Agrometeorology, 2010, 31(4): 563-569. (in Chinese)

[25]龚绍先. 粮食作物与气象. 北京: 北京农业大学出版社, 1987: 27-28.

Gong S X. Crop and Meteorology. Beijing: Beijing Agricultural University Press, 1987: 27-28. (in Chinese)

[26]杨洪宾, 徐成忠, 李春光, 李福元. 播期对冬小麦生长及所需积温的影响. 中国农业气象, 2009, 30(2): 201-203.

Yang H B, Xu C Z, Li C G, Li F Y. Growth and required accumulated temperature of winter wheat under different sowing time. Chinese Journal of Agrometeorology, 2009, 30(2): 201-203. (in Chinese)

[27]魏凤英. 现代气候统计诊断与预测技术. 北京: 气象出版社, 2007: 36-38.

Wei F Y. Technology of Modern Climate Statistics Diagnosis and Forecast . Beijing: China Meteorological Press, 2007: 36-38. (in Chinese)

[28]余卫东, 赵国强, 陈怀亮. 气候变化对河南省主要农作物生育期的影响. 中国农业气象, 2007, 28(1): 9-12.

Yu W D, Zhao G Q, Chen H L. Impacts of climate change on growing stages of main crops in Henan province. Chinese Journal of Agrometeorology, 2007, 28(1): 9-12. (in Chinese)

[29]李红梅, 景毅刚. 气候变暖对陕西冬小麦播种期的影响. 干旱区资源与环境, 2010, 24(11): 171-173.

Li H M, Jing Y G. Influence of climate change on sowing time of winter wheat in Shanxi Province. Journal of Arid Land Resources and Environment, 2010, 24(11): 171-173. (in Chinese)

[30]张 强, 邓振镛, 赵映东, 乔 娟. 全球气候变化对我国西北地区农业的影响. 生态学报, 2008, 28(3): 1210-1218.

Zhang Q, Deng Z Y, Zhao Y D, Qiao J. The impacts of global climatic change on the agriculture in northwest China. Acta Ecologica Sinica, 2008, 28(3): 1210-1218. (in Chinese)

[31]曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 华文出版社, 2000: 24-33.

Cao W X, Luo W H. Crop System Simulation and Intelligent Management. Beijing: Huawen Press, 2000: 24-33. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[3] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[4] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[5] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[6] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[7] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[8] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[9] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[10] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[11] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
[12] GAO XingXiang,ZHANG YueLi,AN ChuanXin,LI Mei,LI Jian,FANG Feng,ZHANG ShuangYing. Investigation and Analysis of Weed Community Succession in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(24): 5230-5239.
[13] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[14] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[15] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!