Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (19): 3930-3936.doi: 10.3864/j.issn.0578-1752.2011.19.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Activity Analysis of Protein KinaseTaNPK Gene Promoter in Wheat

 DI  Chao-Zeng, XU  Zhao-Shi, CHEN  Yao-Feng, LIU  Pei, LI  Lian-Cheng, CHEN  Ming, MA  You-Zhi   

  1. 1.西北农林科技大学农学院
    2.中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程/农业部作物遗传育种重点开放实验室
  • Received:2011-04-06 Online:2011-10-01 Published:2011-05-03

Abstract: 【Objective】 Cloning the promoter of a plant protein kinase gene, TaNPK, and analyzing its response to salt stress, could be helpful to investigate the regulatory mechanism of TaNPK gene and to provide a theoretical foundation for analyzing salt-tolerance mechanism of wheat. 【Method】 Genome walking technology was used to amplify the upstream regulatory sequence of TaNPK gene, and six different 5′UTR deletion mutants of the TaNPK gene promoter were amplified by PCR, and then inserted into the vector pBI121 to replace CaMV 35S promoter respectively. The recombinant plasmids were transferred into Arabidopsis leaf protoplasts by PEG-mediated transient expression system and the promoter activities were quantitatively estimated using gus report gene. 【Result】 A 2 004 bp 5′flanking sequence was obtained by genome walking technology. Deletion analysis was made by comparing with the control. The results coincided with that the GUS gene driven by six 5′-end deletion mutants could be highly effectively expressed in protoplasts, and GUS activity increased in varying degrees with the treatment of NaCl compared with real-time fluorescent quantitative PCR analysis. 【Conclusion】 The TaNPK gene promoter was cloned, the activity analysis showed that NaCl up-regulates TaNPK gene in wheat, and a negative regulatory factor maybe exist between -1 083—-1 296 bp area of the 5′UTR of TaNPK gene.

Key words:

[1]Braun D M, Walker J C. Plant transmembrane receptors: new pieces in the signaling puzzle. Trends in Biochemical Sciences, 1996, 21(2): 70-73.

[2]Mahmut T, Lotze M T, Holton N. Receptor-mediated signalling in plants: Molecular patterns and programmes. Journal of Experimental Botany, 2009, 13(60): 3645-3654.

[3]He X J, Zhang Z G, Yan D Q, Zhang J S, Chen S Y. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theoretical and Applied Genetics, 2004, 109(2): 377-383.

[4]马媛媛, 甘  睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31(4): 331-339.

Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. Journal of Plant Physiology and Molecular Biology, 2005, 31(4): 331-339. (in Chinese)

[5]Dievart A, Clark S E. LRR-containing receptors regulating plant development and defense. Development, 2004, 131: 251-261.

[6]Chen F, Gao M J, Miao Y S, Yuan Y X, Wang M Y, Li Q, Mao B Z, Jiang, L W, He Z H. Plasma membrane localization and potential endocytosis of constitutively expressed XA21 proteins in transgenic rice. Molecular Plant, 2010, 3(5): 917-926.

[7]Wang X L, Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 2006, 313(5790): 1118-1122.

[8]Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R F, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. The Pant Cell, 1996, 8(4): 735-746.

[9]Stein J C, Nasrallah J B. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. Plant Physiology, 1993, 101(3): 1103-1106.

[10]Lally D, Ingmire P, Tong H Y, He Z H. Antisense expression of a cell wall–associated protein kinase, WAK4, inhibits cell elongation and alters morphology. The Plant Cell, 2001, 13(6): 1317-1331.

[11]Jung H W, Hwang B K. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Molecular Plant Pathology, 2007, 8(4): 503-514.

[12]Braun D M, Stone J M, Walker J C. Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases, implications for transmembrane signaling in plants. The Plant Journal, 1997, 12(1): 83-95.

[13]Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Development, 2000, 14: 108-117.

[14]Salchert K, Bhalerao R, Koncz-Kalman Z, Koncz C. Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353(1374): 1517-1520.

[15]Wang Z Y, Seto H, S Fujioka S, Yoshida S, Chory J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410: 380-383.

[16]Clouse S D, Langford M, McMorris T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 1996, 111(3): 671-678.

[17]Schumacher K, Chory J. Brassinosteroid signal transduction: still casting the actors. Current Opinion in Plant Biology, 2000, 3: 79-84.

[18]Butler J E, Kadonaga J T. The RNA polymerse Ⅱ core promoter: a key component in the regulation of gene expression. Gene and Development, 2002, 16(20): 2583-2592.

[19]Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Park C Y, Jeong J C, Moon B C, Lee J H, Yoon H W, Lee S H, Chung W S, Lim C O, Lee S Y, Hong J C, Cho M J. Pathogen- and NaCl-induced

 

expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology, 2004, 135(4): 2150-2161.

[20]Li J M, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90: 929-938.

[21]Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 2005, 433: 167-171.

[22]He Z H, Wang Z Y, Li J M, Zhu Q, Lamb C, Ronald P, Chory J. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 2000, 288(5475): 2360-2363.

[23]Wu F H, Shen S C, Lee L Y, Lee S H, Chan M T, Lin C S. Tape-Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method. Plant Methods, 2009, 5: 1-10.

[24]苟春宝, 王  勇, 喻  川, 陈  放, 魏  炜. 麻疯树MIPS基因启动子的分离及在烟草原生质体中瞬时表达活性分析. 植物生理学通讯, 2010, 46(7): 724-730.

Gou C B, Wang Y, Yu C, Chen F, Wei W. Isolation of MIPS gene promoter from Jatropha curcas L. and activity analysis of transient expression in tobacco protoplast. Plant Physiology Journal, 2010, 46(7): 724-730. (in Chinese)

[25]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants fusion marker in higher plants. The EMBO Journal, 1987, 6(13): 3901-3907.

[26]胡时开, 陶红剑, 钱  前, 郭龙彪. 水稻耐盐性的遗传和分子育种的研究进展. 分子植物育种, 2010, 8(4): 629-640.

Hu S K, Tao H J, Qian Q, Guo L B. Progresses on genetics and molecular breeding for salt-tolerance in rice. Molecular Plant Breeding, 2010, 8(4): 629-640. (in Chinese)

[27]Liu J P, Ishitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the USA, 2000, 97(7): 3735-3740.

[28]Zhu J K. Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4: 401-406.

[29]Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273.
[1] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[2] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[3] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[4] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[5] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[6] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[7] CHEN Liu,NI Zheng,YU Bin,HUA JiongGang,YE WeiCheng,YUN Tao,LIU KeShu,ZHU YinChu,ZHANG Cun. Optimized Promoter Regulating of Duck Tembusu Virus E Protein Expression Delivered by a Vectored Duck Enteritis Virus in vitro [J]. Scientia Agricultura Sinica, 2020, 53(24): 5125-5134.
[8] BIAN ShuXun,HAN XiaoLei,YUAN GaoPeng,ZHANG LiYi,TIAN Yi,ZHANG CaiXia,CONG PeiHua. Cloning and Functional Analysis of U6 Promoter in Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4364-4373.
[9] GE Ting,HUANG Xue,XIE RangJin. Cloning, Subcellular Localization and Expression Analysis of CitPG34 in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(19): 3404-3416.
[10] LIU Chao, WANG LingLi, WU Di, DANG JiangBo, SHANG Wei, GUO QiGao, LIANG GuoLu. Molecular Cloning of Leaf Developmental Gene EjGRF5, Its Promoter and Expression Analysis in Different Ploidy Loquat (Eriobotrya japonica (Thunb.) Lindl.) [J]. Scientia Agricultura Sinica, 2018, 51(8): 1598-1606.
[11] LIU Fang,XIAO Gang,GUAN ChunYun. Regulation of GT and GATA Transcription Factors on Promoter Function of BnA5.FAD2 and BnC5.FAD2 Genes in Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(24): 4603-4614.
[12] PU Yan, LIU Chao, LI Ji-Yang, AERZU GULI·TaShi, HU Yan, LIU XiaoDong. Different SlU6 Promoters Cloning and Establishment of CRISPR/Cas9 Mediated Gene Editing System in Tomato [J]. Scientia Agricultura Sinica, 2018, 51(2): 315-326.
[13] KONG YouBin, LI XiHuan, ZHANG CaiYing. Construction and Activity Analysis of the Promoter of Purple Acid Phosphatase Gene GmPAP4 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(3): 582-590.
[14] ZHANG ChunLing, WANG NiHui, WANG NingLe, BAO ManZhu, HE YanHong. Cloning and Functional analysis of lycopene β-cyclase promoter of marigold (Tagetes erecta) [J]. Scientia Agricultura Sinica, 2017, 50(24): 4779-4789.
[15] LIU Wei, LIU Hao, DONG ShuangYu, GU FengWei, CHEN ZhiQiang, WANG JiaFeng, WANG Hui. Construction of Rice Leaf Sheath Protoplast Transformation System and Transient Expression of Pik-H4 and AvrPik-H4 Proteins [J]. Scientia Agricultura Sinica, 2017, 50(23): 4575-4584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!