Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (17): 3575-3583.doi: 10.3864/j.issn.0578-1752.2011.17.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics of Organic Carbon Mineralization of Maize Straw in Lime Concretion Black Soil

ZHANG  Li-Juan, CHANG  Jiang, JIANG  Li-Na, XU  Shan, ZHANG  Li-Gan   

  1. 安徽农业大学资源与环境学院
  • Received:2010-07-26 Revised:2010-09-08 Online:2011-09-01 Published:2010-12-02

Abstract: 【Objective】 In order to better understand the characteristics of organic carbon mineralization of maize stalk in soil, the influences of different temperatures and different maize straw additions on the mineralization and decomposition of maize stalk in lime concretion black soil were investigated under the controlled condition in the laboratory. 【Method】 Mineralization of maize stalk at different temperatures (10℃, 20℃, 30℃) and different levels of maize straw addition (0.3, 1.5 and 3.0 g straw at 50 g soil) were studied by aerobic incubation tests. 【Result】 Results showed that organic carbon mineralization of maize stalk in soil was significantly influenced by temperature. At the same maize straw addition level, the higher the mineralization temperature (from 10℃ to 30℃), the higher the amounts of the organic carbon accumulated in soil. The mean mineralization temperature coefficients (Q10) of soil organic carbon (SOC) were 1.229, 1.251, 1.572, 1.399 at lower temperatures (<20℃), and 1.006, 1.249, 1.401, 1.374 at higher temperatures (>20℃) for CK, Ⅰ, Ⅱand Ⅲ treatments, respectively. The Q10 values were higher at lower temperatures (<20℃) than that at higher temperatures (>20℃), which indicated that mineralization of SOC was more sensitive to temperature rise at lower temperature. The accumulation and daily mineralization of SOC were increased with the increasing of maize straw addition at the same incubation temperature. The dynamics of SOC mineralization could be well fit by the first-order kinetics equation , and the C0 value increased with the increasing of straw addition. However, the potentially mineralized carbon (C0) was not significantly affected by temperature. 【Conclusion】 The increase of temperature and maize straw addition may be effective strategies for enhancing mineralization of maize straw in soil, and accelerating accumulation of organic carbon in soil.

Key words: lime concretion black soil, maize straw, organic carbon mineralization, mineralization kinetics

[1]颜 丽, 宋 杨, 贺 靖, 陈 盈, 张 昀, 鲍艳宇, 关连珠. 玉米秸秆还田时间和还田方式对土壤肥力物产量的影响. 土壤通报, 2004, 35(2): 143-148 .

Yan L, Song Y, He J, Chen Y, Zhang Y, Bao Y Y, Guan L Z. Effects of maize stems returning back to the field on the yield of plants and soil fertility. Chinese Journal of Soil Science, 2004, 35(2): 143-148. (in Chinese)

[2]Eagle A J, Bird J A, Horwath W R, Linquist B A, Brouder S M, Hill J E, Kessel C V. Rice yield and nitrogen efficiency under alternative straw management practices. Agronomy Journal, 2000, 92: 1096-1103.  

[3]劳秀荣, 孙伟红, 王 真, 郝艳如, 张昌爱. 秸秆还田与化肥配合施用对土壤肥力的影响. 土壤学报, 2003, 40(4): 619-623.

Lao X R, Sun W H, Wang Z, Hao Y R, Zhang C A. Effect of mulching use of straw and chemical fertilizer on soil fertility. Acta Pedologica Sinica, 2003, 40(4): 619-623. (in Chinese)

[4]Kumar K, Goh K M. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics crop yield and nitrogen recovery. Advances in Agronomy, 2000, 68: 197-319.

[5]徐国伟, 段 骅, 王志琴, 刘立军, 杨建昌. 麦秸还田对土壤理化性质及酶活性的影响. 中国农业科学, 2009, 42(3): 934-942.

Xu G W, Duan H, Wang Z Q, Liu L J, Yang J C. Effect of wheat-residue application on physical and chemical characters and enzymatic activities in soil. Scientia Agricultura Sinica, 2009, 42(3): 934-942. (in Chinese)

[6]黄 耀, 刘世梁, 沈其荣, 宗良纲. 环境因子对农业土壤有机碳分解的影响. 应用生态报, 2002, 13(6): 709-714.

Huang Y, Liu S L, Shen Q Z, Zong L G. Influence of environmental factors on the decomposition of organic carbon in agricultural soils. Chinese Journal of Applied Ecology, 2002, 13(6): 709-714. (in Chinese)

[7]Andersson S, Nilsson S I. Influence of pH and temperature on microbial activity substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a morhumus. Soil Biology and Biochemistry, 2001, 33: 1181-1191.

[8]Chen H, Tian H Q, Liu M L, Melillo J, Pan S F, Zhang C. Effect of land-cover change on terrestrial carbon dynamics in the southern United States. Journal of Environmental Quality, 2006, 35: 1533-1547.

[9]戴 慧, 王希华, 阎恩容. 浙江天童土地利用方式对土壤有机碳矿化的影响. 生态学杂志, 2007, 26(7): 1021-1026.

Dai H, Wang X H, Yan E R. Effects of land use type on soil organic carbon mineralization in Tiantong Zhejiang Province. Chinese Journal of Ecology, 2007, 26(7): 1021-1026. (in Chinese)

[10]Fang C M, Smith P, Moncrieff J B, Smith J U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 2005, 433: 57-59.

[11]杨钙仁, 张文菊, 童成立, 吴金水. 温度对湿地沉积物有机碳矿化的影响. 生态学报, 2005, 25(2): 243- 248.

Yang G R, Zhang W J, Tong C L, Wu J S. Effects of temperature on the mineralization of organic carbon in sediment of wetland. Acta Ecologica Sinica, 2005, 25(2): 243-248. (in Chinese)

[12]任秀娥, 童成立, 孙中林, 唐国勇, 肖和艾, 吴金水. 温度对不同粘粒含量稻田土壤有机碳矿化的影响. 应用生态学报, 2007, 18(10): 2245-2250.

Ren X E, Tong C L, Sun Z L, Tang G Y, Xiao H A,Wu J S. Effects of temperature on organic carbon mineralization in paddy soils with different clay content. Chinese Journal of Applied Ecology, 2007, 18(10): 2245- 2250. (in Chinese)

[13]Jenny H. Factors of Soil Formation, New York: McGraw-Hill, 1941: 261-270.

[14]孙 波, 林心雄. 土壤有机质的生物学稳定性及其转化模型. 土壤学进展, 1994, 22(1): 18-25.

Sun B, Lin X X. Biological stability of soil organic carbon and its transformation model. Progress in Soil Science, 1994, 22(1): 18-25. (in Chinese)

[15]黄 耀, 刘世梁, 沈其荣, 宗良纲. 农田土壤有机碳动态模拟模型的建立. 中国农业科学, 2001, 34(5): 532-536.  

Huang Y, Liu S L, Shen Q R, Zong L G. Model establishment for simulating soil organic carbon dynamics. Scientia Agricultura Sinica, 2001, 34(5): 532-536. (in Chinese)

[16]Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 1977, 123(5): 298-305.

[17]Parton W J, Schimel D S, Cole C V, Ojima D S. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of American Journal, 1987, 51: 1173-1179.

[18]王维敏, 张明清, 王文山, 蔡典雄, 张美荣. 黄淮海地区农田土壤有机质平衡的研究. 中国农业科学, 1988, 21(1): 19-26.

Wang W M, Zhang M Q, Wang W S, Cai D X, Zhang M R. A study on the organic matter balance in soil of farmlands in the Huang-Huai-Hai Plain. Scientia Agricultura Sinica, 1988, 21(1): 19-26. (in Chinese)

[19]Li C S, Zhuang Y H, Frolking S, Galloway J, Harriss R, Moore Ⅲ B, Schimel D, Wang X K. Modeling soil organic changing in croplands of China. Ecological Applications, 2003, 13(2): 327-336.

[20]Douglas C L J, Rickman R W. Estimating crop residue decomposition from air temperature, initial nitrogen content, and residue placement. Soil Science Society of American Journal, 1992, 56:272-278.

[21]杨继松, 刘景双, 孙丽娜. 温度、水分对湿地土壤有机碳矿化的影响.生态学杂志, 2008, 27(1): 38-42.

Yang J S, Liu J S, Sun L N. Effects of temperature and soil moisture on wetland soil organic carbon mineralization. Chinese Journal of Ecology, 2008, 27(1): 38-42. (in Chinese) 

[22]张 薇, 高 明, 王 辉, 郑杰炳. 温度和植物残体对紫色母岩发育的水稻土有机碳矿化的影响. 植物营养与肥料学报, 2009, 15(3): 578-583.

Zhang W, Gao M, Wang H, Zheng J B. Effect of temperature and crop residues on the mineralization of carbon in organic purple paddy soil. Plant Nutrition and Fertilizer Science, 2009, 15(3): 578-583. (in Chinese)

[23]鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 25-109.

Bao S D. Analyric Method of Soil and the Agriculture Chemistry. Beijing: Chinese Agriculture Press, 2000: 25-109. (in Chinese)

[24]Reichstein M, Bednorz F, Brolla G, KaÈatterere T. Temperature dependence of carbon mineralisation: Conclusions from a long-term incubation of subalpine soil samples. Soil Biology and Biochemistry, 2000, 32: 947- 958.

[25]Rustad L E. Matter of time on the prarie. Nature, 2001, 413: 578-579.
[1] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[2] ZOU WenXiu,HAN XiaoZeng,LU XinChun,CHEN Xu,HAO XiangXiang,YAN Jun. Effect of Maize Straw Return Aftereffect on Nitrogen Use Efficiency of Maize [J]. Scientia Agricultura Sinica, 2020, 53(20): 4237-4247.
[3] Lü ZhenZhen,LIU XiuMei,ZHONG JinFeng,LAN XianJin,HOU HongQian,JI JianHua,FENG ZhaoBin,LIU YiRen. Effects of Long-Term Fertilization on Mineralization of Soil Organic Carbon in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645.
[4] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
[5] WU Meng, LI Zhong-pei, FENG You-zhi, CHEN Rui-rui, JIANG Chun-yu, LIU Ming. Dynamic Differences of Organic Carbon Mineralization in Different Types of Paddy Soil Under Long-Term Located Fertilization [J]. Scientia Agricultura Sinica, 2016, 49(9): 1705-1714.
[6] JIN Hai-yang, XIE Ying-xin, LI Meng-da, LIU Yu-juan, HE De-xian, FENG Wei, WANG Chen-yang, GUO Tian-cai. Effects of Annual Continuous Tillage on Soil Water Conservation and Crop Yield in Lime Concretion Black Soil Farmland [J]. Scientia Agricultura Sinica, 2016, 49(16): 3239-3250.
[7] HOU Xiao-na, LI Hui, ZHU Liu-bing, HAN Yan-lai, TANG Zheng, LI Zhong-fang, TAN Jin-fang, ZHANG Shui-qing. Effects of Biochar and Straw Additions on Lime Concretion Black Soil Aggregate Composition and Organic Carbon Distribution [J]. Scientia Agricultura Sinica, 2015, 48(4): 705-712.
[8] WANG Dao-zhong, HUA Ke-ke, GUO Zhi-bin. Effects of Long-Term Fertilization on Crop Yield and Soil Physical Properties in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2015, 48(23): 4781-4789.
[9] CHEN Huan-1, LI Wei-1, ZHANG Cun-Ling-2, QIAO Yu-Qiang-1, DU Shi-Zhou-1, ZHAO Zhu-1, CAO Cheng-Fu-1. A Research on Response of Enzyme Activities to Long-term Fertilization in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2014, 47(3): 495-502.
[10] CHEN Huan-1, CAO Cheng-Fu-1, KONG Ling-Cong-1, ZHANG Cun-Ling-2, LI Wei-1, QIAO Yu-Qiang-1, DU Shi-Zhou-1, ZHAO Zhu-1. Study on Wheat Yield Stability in Huaibei Lime Concretion Black Soil Area Based on Long-Term Fertilization Experiment [J]. Scientia Agricultura Sinica, 2014, 47(13): 2580-2590.
[11] ZHAO Ci-Xian, CHEN Xiang-Bi, LI Lei, XIAO He-You, LIU Kun-Ping, HE Xun-Yang, SU Yi-Rong. Effects of Biochar on Soil Organic Carbon Mineralization of Farmland [J]. Scientia Agricultura Sinica, 2013, 46(5): 987-994.
[12] SHEN Xue-Shan, LI Jin-Cai, QU Hui-Juan, WEI Feng-Zhen, ZHANG Yi, WU Wen-Ming. Effects of Wheat and Maize Straw Returned to the Field on Lodging Resistance of Maize in Lime Concretion Black Soil Region [J]. Scientia Agricultura Sinica, 2011, 44(10): 2005-2012.
[13] HAO Rui-jun,LI Zhong-pei,CHE Yu-ping
. Characteristics of Organic C Mineralization Under Aerobic and Submerged Conditions in Paddy Soils of Southern Jiangsu Province#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1164-1172 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!