Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (16): 3361-3367.doi: 10.3864/j.issn.0578-1752.2011.16.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Degradation of 2,4-D by Combined Use of Nanoscale Fe3O4 and Microorganism

WANG  Wei-Ping, SI  You-Bin   

  1. 安徽农业大学资源与环境学院
  • Received:2010-07-02 Revised:2010-09-16 Online:2011-08-15 Published:2010-10-22

Abstract: 【Objective】 The degradation of 2,4-D with a combination of nanoscale Fe3O4 and microorganism in solution was studied. The research will provide a basis for remediation of pesticide pollution. 【Method】 Nanoscale Fe3O4 would eliminate the toxicity by reductively transform the electron-withdrawing chlorine groups to chloride, then the bacteria was employed to combine with nanoscale Fe3O4 to degrade 2,4-D. The combination mechanism was revealed by analysis of the relationship between   bacteria and nanoscale Fe3O4. 【Result】 The results showed that the residual rates of 2,4-D decreased from 100% to 52.0% in 48 h   in the presence of 300 mg•L-1 Fe3O4 nanoparticles. Meanwhile, the concentration of chloride ion was increased to 85 μmol•L-1,   and the degradation of 2,4-D was a preliminary reductive dechlorination process. 2,4-D could provide carbon sources for  promoting microbial growth, and the residual rates of 2,4-D was 57.0% in 5 days by the microorganism treatments. The  combination of nanoscale Fe3O4 with microorganism had significantly increased degradation of 2,4-D, and the residual rates of  2,4-D decreased to 35.7% in 7 days, which was much lower than the single treatment of nanoscale Fe3O4 or microorganism. Additionally, microorganisms was also used to degrade 2,4-DCP which was the reductive degradation products of 2,4-D, the residual rates of 2,4-DCP was 50.1% in 5 days, accordingly, the growth OD600 value of microorganisms was 3.29. 【Conclusion】 The degradation rate of 2,4-D by combination treatment was much higher than that separate nanoscale Fe3O4 or microorganism. Nanoscale Fe3O4 could stimulate the growth of microorganisms and reductive degradation product 2,4-DCP was more apt to degradation than 2,4-D.

Key words: Nanoscale Fe3O4, Microorganism, 2,4-D, Combination degradation

[1]Purcell M, Neault J F, Malonga H, Arakawa H, Carpentier R, Tajmir-Riahi H A. Interactions of atrazine and 2,4-D with human serum albumin studied by gel and capillary electrophoresis, and FTIR spectroscopy. Biochimica et Biophysica Acta, 2001, 1548: 129-138.

[2]Cox C. Herbicide factsheet 2,4-D: toxicology, part 1. Journal Pesticide Reform, 1999, 19(1): 14-19.

[3]Gandahi R, Wandji S A, Snedeker S. Critical evaluation of 2,4-D,s breast cancer risk. Reviews of Environmental Contamination and Tcoxicology, 2000, 167: 1-33.

[4]吴 坤, 张世敏, 朱显峰.木质素生物降解研究进展.河南农业大学学报, 2000, 34(4): 349-354.

Wu K, Zhang S M, Zhu X F. Recent research advances on the lignin biodegradation. Journal of Henan Agricultural University, 2000, 34 (4): 349-354. (in Chinese)

[5]Tratnyek P G, Johnson R L. Nanotechnologies for environmental cleanup. Nanotoday, 2006, 1(2): 44- 48.

[6]陈宜菲. 零价金属脱氯降解有机氯化污染物研究进展. 安庆师范学院学报: 自然科学版, 2005, 11(3): 38-42.

Chen Y F. Study on reductive dechlorination of chlorinated organic pollutants by zero-valent metal. Journal of Anqing Teachers College: Natural Science Edition, 2005, 11(3): 38-42. (in Chinese)

[7]Zhang W X. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5: 323-332.

[8]Liao C J, Chung T L, Chen W L, Kou S L. Treatment of pentachlorophenol contaminated soil using nano-scale zero-valent iron with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 2007, 265: 189-194.

[9]Bell C H, Arora B S, Camesano T A. Adhesion of Pseudomonas putida KT2442 is mediated by surface polymers at the nano- and microscale. Environmental Engineering Science, 2005, 22(5): 629-641.

[10]Lampron K J, Chiu P C, Cha D K. Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms. Water Research, 2001, 35(13): 3077-3084.

[11]Lee T, Tokunaga T, Suyama A, Furukawa K. Efficient dechlorination of tetrachloroethyene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. Journal of Bioscience and Bioengineering, 2001, 92(5): 453-458.

[12]Paknikar K M, Nagpal V, Pethkar A V, Rajwade J M. Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Science and Technology of Advanced Materials, 2005, 6: 370-374.

[13]肖小华, 尹 怡, 胡玉玲, 李攻科. 水中酚类化合物的液-液-液微萃取/高效液相色谱联用分析研究. 分析测试学报, 2007, 26(6): 797-801.

Xiao X H, Yin Y, Hu Y L, Li G K. Determination of trace phenolic compounds in water samples by liquid-liquid-liquid microextraction coupled with HPLC. Journal of Instrumental Analysis, 2007, 26(6): 797-801. (in Chinese)

[14]张胜利, 刘 丹, 欧阳峰. 高效液相色谱法同时测定苯酚及其氯化中间产物. 环境监测管理与技术, 2009, 21(1): 25-27.

Zhang S L, Liu D, Ouyang F. Simultaneous determination of phenol and its chlorination intermediates by HPLC. The Administration and Technique of Environmental Monitoring, 2009, 21(1): 25-27. (in Chinese)

[15]Si Y B, Fang G D, Zhou J, Zhou D M. Reductive transformation of 2,4-dichlorophenoxyacetic acid by nanoscale and microsoale Fe3O4 particles. Journal of Environmental Science and Health, Part B, 2010, 45(3): 233-241.

[16]Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 1994, 32(6): 958-967.

[17]汪 玉, 王 磊, 司友斌, 孟雪梅. 粘土矿物固定化微生物对土壤中阿特拉津的降解研究. 农业环境科学学报, 2009, 28(11): 2401-2406.

Wang Y, Wang L, Si Y B, Meng X M. Biodegradation of atrazine in soils by clay minerals immobilized a degradation bacterium. Journal of Agro-Environment Science, 2009, 28(11): 2401-2406. (in Chinese)

[18]张宏军, 崔海兰, 周志强, 江树人. 莠去津微生物降解的研究进展. 农药学学报, 2002, 4(4): 10-16.

Zhang H J, Cui H L, Zhou Z Q, Jang S R. Research development of biodegradation of atrazine. Chinese Journal of Pesticide Science, 2002, 4(4): 10-16. (in Chinese)

[19]王伟萍, 司友斌, 方国东, 汪  玉. 纳米Fe3O4/微生物联合体系对2,4-D和阿特拉津降解的研究. 农业环境科学学报, 2010, 29(2): 375-380.

Wang W P, Si Y B, Fang Y D, Wang Y. Degradation of 2,4-D and atrazine by nanoscale Fe3O4 and microorganism integrated treatment system. Journal of Agro-Environment Science, 2010, 29(2): 375-380. (in Chinese)

[20]董玲玲, 吴锦华, 吴海珍, 吴超飞, 韦朝海. 硝基苯厌氧降解过程中Fe0的促进作用. 环境化学, 2005, 24(6): 643-646. 

Dong L L, Wu J H, Wu H Z, Wu C F, Wei C H. The accelerative effect of Fe0 on anaerobic degradation nitrobenzene-contaning waste water. Environmental Chemistry, 2005, 24(6): 643-646. (in Chinese)

[21]刘智勇, 戴友芝, 程 婷. Fe0/厌氧微生物联合体系处理2,4,6-三氯酚影响因素的研究. 环境工程学报, 2008, 2(3): 349-352.

Liu Z Y, Dai Y Z, Cheng T. Degradation of 2,4,6-trichorphenol by integrated microbial-Fe0 treatment system and impact factors. Chinese Journal of Environmental Engineering, 2008, 2(3): 349-352. (in Chinese)

[22]程 荣,王建龙,Zhang Wei-Xian. 纳米Fe0颗粒对三种单氯酚的降解. 中国环境科学, 2006, 26(6): 698-702.

Cheng R, Wang J L, Zhang W X. Degradation of 3 kinds of chlorinated phenols by nanoscale Fe0. China Environmental Science, 2006, 26(6): 698-702. (in Chinese)

[23]Cheng R, Wang J L, Zhang W X. Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0. Journal of Hazardous Materials, 2006, 144: 334-339.

[24]方国东, 司友斌. 纳米四氧化三铁对2,4-D的脱氯降解. 环境科学, 2010, 31(6): 1499-1505.

Fang G D, Si Y B. Dechlorination degradation of 2,4-D by  nanoscale Fe3O4. Environmental Science, 2010, 31(6): 1499-1505. (in Chinese)

[25]王国惠. 有机氯农药高效降解菌的筛选及其降解能力的研究. 工程与技术, 2004(8): 12-14.

Wang G H. Selection of high efficient degrading strains and study on its degrading capability. Engineering and Technology, 2004(8): 12-14. (in Chinese)

[26]卫亚红, 张晓燕, 曲  东. 2,4-D除草剂降解菌的分离及其生物学特性的研究. 农业环境科学学报, 2007, 26(6): 2183-2188.

Wei Y H, Zhang X Y, Qu D. Isolation of bacteria for degradation of herbicide 2,4-D and their biological characteristics. Journal of Agro-Environment Science, 2007, 26(6): 2183-2188. (in Chinese)
[1] ZHANG JinYuan,LI YanSheng,YU ZhenHua,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,WU JunJiang,Stephen J HERBERT,JIN Jian. Nitrogen Cycling in the Crop-Soil Continuum in Response to Elevated Atmospheric CO2 Concentration and Temperature -A Review [J]. Scientia Agricultura Sinica, 2021, 54(8): 1684-1701.
[2] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[3] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[4] SHENG YueFan,WANG HaiYan,QIAO HongYuan,WANG Mei,CHEN XueSen,SHEN Xiang,YIN ChengMiao,MAO ZhiQuan. Effects of Different Soil Textures on the Degree of Replanted Disease of Malus hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2019, 52(4): 715-724.
[5] ZOU Chun-jiao, QI Ming-fang, MA Jian, WU Chun-cheng, LI Tian-lai. Analysis of Soil Microbial Community Structure and Diversity in Cucumber Continuous Cropping Nutrition Medium by Biolog-ECO [J]. Scientia Agricultura Sinica, 2016, 49(5): 942-951.
[6] HAN Zhe, XU Li-hong, LIU Cong, KONG Ling-kun, WU Feng-zhi, PAN Kai. Effect of Wheat Residues on Growth and Rhizosphere Microorganisms of Continuously Monocropped Watermelon [J]. Scientia Agricultura Sinica, 2016, 49(5): 952-960.
[7] WANG Bin, LI Yu-E, WAN Yun-Fan, QIN Xiao-Bo, GAO Qing-Zhu. Effect and Assessment of Controlled Release Fertilizer and Additive Treatments on Greenhouse Gases Emission from a Double Rice Field [J]. Scientia Agricultura Sinica, 2014, 47(2): 314-323.
[8] SA Ru-La, GAO Ju-Lin, YU Xiao-Fang, HU Shu-Ping. Screening of Low Temperature Maize Stalk Decomposition Microorganism [J]. Scientia Agricultura Sinica, 2013, 46(19): 4082-4090.
[9] JI Cheng. Advances in Research on Biodegradation of Mycotoxins in Feed [J]. Scientia Agricultura Sinica, 2012, 45(1): 153-158.
[10] . Effects of Nanoscale Fe3O4 on Microbial Communities, Enzyme Activities and 2,4-D Degradation in Red Soil
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1165-1172 .
[11] ZHU Wei-jie,WANG Nan,YU Xue-ping,WANG Wei . Effects of the Biocontrol Agent Pseudomonas fluorescens 2P24 on Microbial Community Diversity in the Melon Rhizosphere
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1389-1396 .
[12] LI Bing-zhi,WANG Gui-fang,QIN Xiao-fei,ZHANG Lin-sen,HAN Ming-yu,ZHANG Li
. Effect of Application of Biogas Slurry with Potassium on Orchard Soil Properties and Soil Microorganism and Fruit Quality
[J]. Scientia Agricultura Sinica, 2010, 43(22): 4671-4677 .
[13] WANG Hu-hu,XU Xing-lian.

Detection of Pathogenic Microorganisms in Fresh Chicken Meat by Multiplex PCR

[J]. Scientia Agricultura Sinica, 2010, 43(17): 3608-3615 .
[14] JIANG Fei,LIU Ye-xia,AI Xi-zhen,ZHENG Nan,WANG Hong-tao
. Study on Relationship Among Microorganism, Enzymes’ Activity in Rhizosphere Soil and Root Rot Resistance of Grafted Pepper
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3367-3374 .
[15] LIU Chang-li,WANG Xiao-fen,GUO Peng,LI Pei-pei,SHEN Hai-long,CUI Zong-jun
. Construction of A Normal Temperature Straw-rotting Microbial Community and Its Character in Degradation of Rice Straw
[J]. Scientia Agricultura Sinica, 2010, 43(1): 105-111 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!