Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (15): 3252-3263.doi: 10.3864/j.issn.0578-1752.2011.15.021

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Progress in Research of FLP/FRT Site-Specific Recombination System in Higher Eukaryotes

ZHAO  Ai-Chun, LONG  Ding-Pei, TAN  Bing, XU  Long-Xia, XIANG  Zhong-Huai   

  1. 1. 西南大学蚕学与系统生物学研究所/农业部蚕学重点开放实验室
  • Received:2010-09-28 Revised:2010-11-21 Online:2011-08-01 Published:2010-12-08
  • Contact: Ai-Chun ZHAO E-mail:zhaoaichun@hotmail.com

Abstract: FLP/FRT site-specific recombination system derived from 2 μm plasmid of yeast has been widely used in Arabidopsis thaliana, Oryza sativa Linnaeus, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and other higher eukaryotic organisms, and gradually become one of the powerful tools of genetic manipulation in transgenic animals and plants research areas. This review introduced the recombination principles of FLP/FRT system and its application in higher eukaryotes, and systematically summarized the main achievements of the system in transgenic plants, mammals, insects and other higher eukaryotic model organisms. In addition, the main problem, application prospect and developmental trend of the FLP/FRT system were discussed in this review.

Key words: FLP/FRT system, site-specific recombination, transgene, higher eukaryotes

[1]谷  欣, 黎  燕. 位点特异性重组技术研究进展. 生物技术通讯, 2005, 16(4): 417-419.

Gu X, Li Y. The development of site-specific recombination. Letters in Biotechnology, 2005, 16(4): 417-419. (in Chinese)

[2]滕  艳, 杨  晓. 基因打靶技术: 开启遗传学新纪元. 遗传, 2007, 29(11): 1291-1298.

Teng Y, Yang X. Gene targeting: the beginning of a new era in genetics. Hereditas, 2007, 29(11): 1291-1298. (in Chinese)

[3]Hartley J L, Donelson J E. Nucleotide sequence of the yeast plasmid. Nature, 1980, 286(5776): 860-865.

[4]Falco S C, Li Y, Broach J R, Botstein D. Genetic properties of chromosomally integrated 2 μ plasmid DNA in yeast. Cell, 1982, 29(2): 573-584.

[5]Jayaram M, Li Y Y, Broach J R. The yeast plasmid 2 μ circle encodes components required for its high copy propagation. Cell, 1983, 34(1): 95-104.

[6]Volkert F C, Broach J R. Site-specific recombination promotes plasmid amplification in yeast. Cell, 1986, 46(4): 541-550.

[7]Broach J R, Hicks J B. Replication and recombination functions associated with the yeast plasmid, 2 μ circle. Cell, 1980, 21(2): 501-508.

[8]Volkert F C, Wilson D W, Broach J R. Deoxyribonucleic acid plasmids in yeasts. Microbiological Reviews, 1989, 53(3): 299-317.

[9]Andrews B J, Proteau G A, Beatty L G, Sadowski P D. The FLP recombinase of the 2 μ circle DNA of yeast: interaction with its target sequences. Cell, 1985, 40(4): 795-803.

[10]Argos P, Landy A, Abremski K, Egan J B, Haggard-Ljungquist E, Hoess R H, Kahn M L, Kalionis B, Narayana S V L, Pierson III L S, Sternberg N, Leong J M. The integrase family of site-specific recombinases: regional similarities and global diversity. The EMBO Journal, 1986, 5(2): 433-440.

[11]Abremski K E, Hoess R H. Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Engineering, 1992, 5(1): 87-91.

[12]Pan G, Luetke K, Sadowski P D. Mechanism of cleavage and ligation by FLP recombinase: classification of mutations in FLP protein by in vitro complementation analysis. Molecular and Cellular Biology, 1993, 13(6): 3167-3175.

[13]Zhu X D, Sadowski P D. Cleavage-dependent ligation by the FLP recombinase. Characterization of a mutant FLP protein with an alteration in a catalytic amino acid. The Journal of Biological Chemistry, 1995, 270(39): 23044-23054.

[14]Parsons R L, Evans B R, Zheng L, Jayaram M. Functional analysis of Arg-308 mutants of Flp recombinase. The Journal of Biological Chemistry, 1990, 265(8): 4527-4533.

[15]Senecoff J F, Bruckner R C, Cox M M. The FLP recombinase of the yeast 2-μm plasmid: characterization of its recombination site. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(21): 7270-7274.

[16]Sadowski P D. The Flp double cross system a simple efficient procedure for cloning DNA fragments. BMC Biotechnology, 2003, 3: 9.

[17]Kilby N J, Snaith M R, Murray J A H. Site-specific recombinases: tools for genome engineering. Trends in Genetics, 1993, 9(12): 413-421.

[18]Senecoff J F, Rossmeissl P J, Cox M M. DNA recognition by the FLP recombinase of the yeast 2 μ plasmid. A mutational analysis of the FLP binding site. Journal of Molecular Biology, 1988, 201(2): 405-421.

[19]Schlake T, Bode J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry, 1994, 33(43): 12746-12751.

[20]Seibler J, Schübeler D, Fiering S, Groudine M, Bode J. DNA cassette exchange in ES cells mediated by FLP recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochemistry, 1998, 37(18): 6229-6234.

[21]Cobellis G, Nicolaus G, Iovino M, Romito A, Marra E, Barbarisi M, Sardiello M, Di Giorgio F P, Iovino N, Zollo M, Ballabio A, Cortese R. Tagging genes with cassette-exchange sites. Nucleic Acids Research, 2005, 33(4): e44.

[22]Cesari F, Rennekampff V, Vintersten K, Vuong L G, Seibler J, Bode J, Wiebel F F, Nordheim A. Elk-1 knock-out mice engineered by Flp recombinase-mediated cassette exchange. Genesis, 2004, 38(2): 87-92.

[23]Hauser H, Spitzer D, Verhoeyen E, Unsinger J, Wirth D. New approaches towards ex vivo and in vivo gene therapy. Cells Tissues Organs, 2000, 167(2/3): 75-80.

[24]Sadowski P D. The Flp recombinase of the 2-μm plasmid of Saccharomyces cerevisiae. Progress in Nucleic Acid Research and Molecular Biology, 1995, 51: 53-91.

[25]Lee J, Whang I, Jayaram M. Assembly and orientation of Flp recombinase active sites on two-, three- and four-armed DNA substrates: implications for a recombination mechanism. Journal of Molecular Biology, 1996, 257(3): 532-549.

[26]Lee J, Jayaram M, Grainge I. Wild-type Flp recombinase cleaves DNA in trans. The EMBO Journal, 1999, 18(3): 784-791.

[27]Jayaram M. The cis-trans paradox of integrase. Science, 1997, 276(5309): 49-51.

[28]Jayaram M, Crain K L, Parsons R L, Harshey R M. Holliday junctions in FLP recombination: resolution by step-arrest mutants of FLP protein. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(21): 7902-7906.

[29]Chen Y, Narendra U, Iype L E, Cox M M, Rice P A. Crystal structure of a Flp recombinase-holliday junction complex: assembly of an active oligomer by helix swapping. Molecular Cell, 2000, 6(4): 885-897.

[30]Sauer B. Site-specific recombination: developments and applications. Current Opinion in Biotechnology, 1994, 5(5): 521-527.

[31]Branda C S, Dymecki S M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Developmental Cell, 2004, 6(1): 7-28.

[32]Ow D W. 2004 SIVB congress symposium proceeding: transgene management via multiple site-specific recombination systems. In Vitro Cellular and Developmental Biology-Plant, 2005, 41(3): 213-219.

[33]Lyznik L A, Mitchell J C, Hirayama L, Hodges T K. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Research, 1993, 21(4): 969-975.

[34]Sonti R V, Tissier A F, Wong D, Viret J F, Signer E R. Activity of the yeast FLP recombinase in Arabidopsis. Plant Molecular Biology, 1995, 28(6): 1127-1132.

[35]Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch A P, Chandlee J M, Hodges T K, Luo H. FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnology Journal, 2008, 6(45): 176-188.

[36]Li B, Li N, Duan X, Wei A, Yang A, Zhang J. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. Journal of Biotechnology, 2010, 145(2): 206-213.

[37]Kilby N J, Davies G J, Snaith M R, Murray J A H. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. The Plant Journal, 1995, 8(5): 637-652.

[38]Luo K, Sun M, Deng W, Xu S. Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter. Biotechnology Letters, 2008, 30(7): 1295-1302.

[39]Woo H J, Cho H S, Lim S H, Shin K S, Lee S M, Lee K J, Kim D H, Cho Y G. Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Research, 2009, 18(3): 455-465.

[40]O'Gorman S, Fox D T, Wahl G M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 1991, 251(4999): 1351-1355.

[41]Dymecki S M. Flp recombinase promotes site-specific DNA recombinationin in embryonic stem cells and transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(12): 6191-6196.

[42]Lo W H, Hwang S M, Chuang C K, Chen C Y, Hu Y C. Development of a hybrid baculoviral vector for sustained transgene expression. Molecular Therapy, 2009, 17(4): 658-666.

[43]Buchholz F, Ringrose L, Angrand P O, Rossi F, Stewart A F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Research, 1996, 24(21): 4256-4262.

[44]Buchholz F, Angrand P O, Stewart A F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nature Biotechnology, 1998, 16(7): 657-662.

[45]Raymond C S, Soriano P. High-efficiency FLP and ФC31 site-specific recombination in mammalian cells. PLoS One, 2007, 2(1): e162.

[46]Kondo S, Takata Y, Nakano M, Saito I, Kanegae Y. Activities of various FLP recombinases expressed by adenovirus vectors in mammalian cells. Journal of Molecular Biology, 2009, 390(2): 221-230.

[47]Wu Y, Wang C, Sun H, LeRoith D, Yakar S. High-efficient FLPo deleter mice in C57BL/6J background. PLoS One, 2009, 4(11): e8054.

[48]Wiberg F C, Rasmussen S K, Frandsen T P, Rasmussen L K, Tengbjerg K, Coljee V W, Sharon J, Yang C Y, Bregenholt S, Nielsen L S, Haurum J S, Tolstrup A B. Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnology and Bioengineering, 2006, 94(2): 396-405.

[49]Turakainen H, Saarimäki-Vire J, Sinjushina N, Partanen J, Savilahti H. Transposition-based method for the rapid generation of gene-targeting vectors to produce Cre/Flp-modifiable conditional knock-out mice. PLoS One, 2009, 4(2): e4341.

[50]Golic K G, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell, 1989, 59(3): 499-509.

[51]Morris A C, Schaub T L, James A A. FLP-mediated recombination in the vector mosquito, Aedes aegypti. Nucleic Acids Research, 1991, 19(21): 5895-5900.

[52]Tomita S, Kanda T, Imanishi S, Tamura T. Yeast FLP recombinase-mediated excision in cultured cells and embryos of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Applied Entomology and Zoology, 1999, 34(3): 371-377.

[53]Theodosiou N A, Xu T. Use of FLP/FRT system to study Drosophila development. Methods in Enzymology, 1998, 14(4): 355-365.

[54]Golic K G, Golic M M. Engineering the Drosophila genome: chromosome rearrangements by design. Genetics, 1996, 144(4): 1693-1711.

[55]Rong Y S, Golic K G. Gene targeting by homologous recombination in Drosophila. Science, 2000, 288(5473): 2013-2018.

[56]Parks A L, Cook K R, Belvin M, Dompe N A, Fawcett R, Huppert K, Tan L R, Winter C G, Bogart K P, Deal J E, Deal-Herr M E, Grant D, Marcinko M, Miyazaki W Y, Robertson S, Shaw K J, Tabios M, Vysotskaia V, Zhao L, Andrade R S, Edgar K A, Howie E, Killpack K, Milash B, Norton A, Thao D, Whittaker K, Winner M A, Friedman L, Margolis J, Singer M A, Kopczynski C, Curtis D, Kaufman T C, Plowman G D, Duyk G, Francis-Lang H L. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genetics, 2004, 36(3): 288-292.

[57]Siegal M L, Hartl D L. Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics, 1996, 144(2): 715-726.

[58]Siegal M L, Hartl D L. Application of Cre/loxP in Drosophila. Site-specific recombination and transgene coplacement. Methods in Molecular Biology, 2000, 136: 487-495.

[59]Bode J, Schlake T, Iber M, Schübeler D, Seibler J, Snezhkov E, Nikolaev L. The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes. Biological Chemistry, 2000, 381(9/10): 801-813.

[60]Baer A, Bode J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Current Opinion in Biotechnology, 2001, 12(5): 473-480.

[61]Horn C, Handler A M. Site-specific genomic targeting in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35): 12483-12488.

[62]Taillebourg E, Dura J M. A novel mechanism for P element homing in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(12): 6856-6861.

[63]Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 1999, 22(3): 451-461.

[64]Lee T, Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neurosciences, 2001, 24(5): 251-254.

[65]Luo L. Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Research Reviews, 2007, 55(2): 220-227.

[66]Davis M W, Morton J J, Carroll D, Jorgensen E M. Gene activation using FLP recombinase in C. elegans. PLoS Genetics, 2008, 4(3): e1000028.

[67]Voutev R, Hubbard E J A. A “FLP-out” system for controlled gene expression in Caenorhabditis elegans. Genetics, 2008, 180(1): 103-119.

[68]Vázquez-Manrique R P, Legg J C, Olofsson B, Ly S, Baylis H A. Improved gene targeting in C. elegans using counter-selection and Flp-mediated marker excision. Genomics, 2010, 95(1): 37-46.

[69]Werdien D, Peiler G, Ryffel G U. FLP and Cre recombinase function in Xenopus embryos. Nucleic Acids Research, 2001, 29(11): e53.

[70]Ryffel G U, Werdien D, Turan G, Gerhards A, Gooβes S, Senkel S. Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Research, 2003, 31(8): e44.

[71]Wong A C, Draper B W, Van Eenennaam A L. FLPe functions in zebrafish embryos. Transgenic Research, 2010: DOI 10.1007/ s11248-010-9410-9.

[72]易厚富, 王金发. 异源位点特异性重组系统在植物中的研究. 遗传, 1999, 21(5): 62-66.

Yi H F, Wang J F. Studies on heterogenetic site-specific recombination systems in plant. Hereditas, 1999, 21(5): 62-66. (in Chinese)

[73]Halpin C. Gene stacking in transgenic plants-the challenge for 21st century plant biotechnology. Plant Biotechnology Journal, 2005, 3(2): 141-155.

[74]Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nature Biotechnology, 2003, 21(1): 52-56.
[1] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[2] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[3] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[4] LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun. Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives [J]. Scientia Agricultura Sinica, 2018, 51(2): 363-373.
[5] LI Hui, LIU Qing-you, SHI De-shun. The Expression Efficiency of Human IFNα-2b Regulated by β-Casein Gene Promoters from Different Sources [J]. Scientia Agricultura Sinica, 2016, 49(5): 970-978.
[6] LIU Cheng, YANG Bing-peng, SUN Bao-cheng, ZHANG Jia-chang, TANG Huai-jun, WANG Tian-yu, ZHANG Deng-feng, XIE Xiao-qing, SHI Yun-su, SONG Yan-chun, YANG Xiao-hong, LI Yu, LI Jian-sheng. Field Identification of Drought Tolerance of LOS5 Transgenic Maize [J]. Scientia Agricultura Sinica, 2016, 49(23): 4469-4479.
[7] GUO San-dui, WANG Yuan, SUN Guo-qing, JIN Shi-qiao, ZHOU Tao, MENG Zhi-gang, ZHANG Rui. Twenty Years of Research and Application of Transgenic Cotton in China [J]. Scientia Agricultura Sinica, 2015, 48(17): 3372-3387.
[8] WANG Qing-jie, JIN Zhong-xin, ZHOU Li-jie, HAO Yu-jin, YAO Yu-xin. Impacts of MdcyMDH Overexpression on Photosynthesis, Hormone and Growth in Apple [J]. Scientia Agricultura Sinica, 2015, 48(14): 2868-2875.
[9] WANG Gen-Ping, DU Wen-Ming, XIA Lan-Qin. Current Status of Transgenic Technologies for Safety Consideration in Plants and Future Perspectives [J]. Scientia Agricultura Sinica, 2014, 47(5): 823-843.
[10] ZHAO Jing-xian, LI Juan, YAN Xing-rong, NI He-min, CHEN Yan, ZHANG Lu-pei, GAO Hui-jiang, XU Shang-zhong, LI Jun-ya1, GAO Xue. The Biological Identification of FABP4 Transgenic Cattle [J]. Scientia Agricultura Sinica, 2014, 47(24): 4895-4903.
[11] JIA Shi-Rong-1, YUAN Qian-Hua-2, WANG Feng-3, YAO Ke-Min-4, PEI Xin-Wu-1, HU Ning-4, WANG Zhi-Xing-1, WANG Xu-Jing-1, LIU Wu-Ge-3, QIAN Qian-5. What We Have Learnt in Ten Years′ Study of Rice Transgene Flow [J]. Scientia Agricultura Sinica, 2014, 47(1): 1-10.
[12] LU Gai, CHENG Ting-Cai, JIANG Liang, JIN Sheng-Kai, LIN Ping, HU Cui-Mei, XIA Qing-You. Cloning and Activity Analysis of a Midgut-Specific Promoter BmAPN in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2012, 45(20): 4279-4287.
[13] PAN Xiao-Yan, YU Yong-Sheng, LIU Xiao-Hui, WANG Zheng-Chao, WANG Xiao-Yang, PU Qing-Lin, ZHANG Li-Chun, JIN Hai-Guo. Construction of Cashmere Goat Embryos Carrying K2.9 Gene by Transgenic Somatic Cell Nuclear Transfer Technology [J]. Scientia Agricultura Sinica, 2012, 45(10): 2067-2075.
[14] LI Chen,YAN Xiao-hong,YANG Jie,YANG Qing,WEI Wen-hui
. Plant Artificial Chromosome: The Vector for the Next Generation of Genetic Engineering [J]. Scientia Agricultura Sinica, 2011, 44(4): 657-663 .
[15] ZHANG Shuang-Xi, XU Zhao-Shi, ZHANG Gai-Sheng, LI Lian-Cheng, CHEN Xiao, CHEN Ming, MA You-Zhi. Creation of Drought-Resistant Variety and Analysis of Physiological Mechanism of W16 Transgenic Wheat [J]. Scientia Agricultura Sinica, 2011, 44(24): 4971-4979.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!