Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (2): 363-373.doi: 10.3864/j.issn.0578-1752.2018.02.015

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives

LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun   

  1. Institute of Sericulture and Systems Biology, Southwest University/State Key Laboratory of Silkworm Genome Biology/Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Chongqing 400716
  • Received:2017-03-30 Online:2018-01-16 Published:2018-01-16

Abstract: Transgenic technology is an important tool for gene function analysis and genetic improvement of biological variety.At present, the safety problems of GMOs mainly focus on the safety of genetic manipulation techniques and genetically modified products. In recent years, the researches on the safety of GMOs werefocused on evaluating the security level of genetically modified crops, aquatic animals and poultry, livestock and other large animals in medicine, agriculture, and food industry, but the reports of the safety of genetic manipulation techniquesare still rare in the agricultural insects which have important scientific and economic value, and the Ministry of Agriculture has not yet set a precedent for the safety assessment of transgenic insects. The silkworm (Bombyx mori) is an important mode lepidopteran and economic insect for agriculture. In-depth research on the safety of transgenic technologies of B. mori, which has important value and significance for promoting the development of basic genetics and silk industry. Since the first report of the germline transformation of the B. mori using a piggyBac transposon-derived vector in 2000, transgenic technology has been widely used in the basic research of gene function identification and the applied research of creating new varieties with specific gene differences in B. mori. But the safety problems of transgenic B. mori have become the key problems that hindering the practical application of transgenic B. mori. Therefore, doing research on the safety of transgenic technologies of B. mori is of great significance to promote the safety assessment and industrialization of transgenic B. mori. This paper summarizes the establishment and research status of the conditional gene targeting-based safety of transgenic technologies of B. mori, while the development trends and application prospect of these technologies in B. mori are also discussed, as well as provide references for establishing and perfecting the safety of transgenic technologies in other transgenic animals, especially the agriculture insect species.

Key words: silkworm(Bombyx mori), biosafety, safe transgenic technology, site-specific recombination, marker gene deletion, target genome editing and integration

[1]    James C. 2015年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2016, 36(4): 1-11.
James C. Global status of commercialized biotech/GM crops: 2015. China Biotechnology, 2016, 36(4): 1-11. (in Chinese)
[2]    王大元. 美国转基因三文鱼商业化的启示. 科学通报, 2016, 61(3): 289-295.
Wang D Y. Implications of US GMO Salmon approved for commercial food use. Chinese Science Bulletin, 2016, 61(3): 289-295. (in Chinese)
[3]    张然, 王嫒嫒, 鲍永华, 赵杰, 李宁. 转基因动物应用的研究现状与生物安全评价. 生物产业技术, 2010(3): 48-59.
Zhang R, Wang Y Y, Bao Y H, Zhao J, Li N. Current status and biosafety evaluation of transgenic animals. Biotechnology and Business, 2010(3): 48-59. (in Chinese)
[4]    连庆, 王伟威. 我国转基因动物研究进展及安全评价管理. 江苏农业科学, 2012, 40(8): 287-289.
Lian Q, Wang W W. Research progress and safety evaluation of transgenic animals in China. Jiangsu Agricultural Sciences, 2012, 40(8): 287-289. (in Chinese)
[5]    许建香, 李宁. 转基因动物生物安全研究与评价. 生物工程学报, 2012, 28(3): 267-281.
Xu J X, Li N. Biosafety assessment of genetically engineered  animals. Chinese Journal of Biotechnology, 2012, 28(3): 267-281. (in Chinese)
[6]    王根平, 杜文明, 夏兰琴. 植物安全转基因技术研究现状与展望. 中国农业科学, 2014, 47(5): 823-843.
Wang G P, Du W M, Xia L Q. Current status of transgenic technologies for safety consideration in plants and future perspectives. Scientia Agricultura Sinica, 2014, 47(5): 823-843. (in Chinese)
[7]    陈亮, 黄庆华, 孟丽辉, 邢焕, 姚斌, 杨晓光, 张宏福. 转基因作物饲用安全性评价研究进展. 中国农业科学, 2015, 48(6): 1205-1218.
Chen L, Huang Q H, Meng L H, Xing H, Yao B, Yang X G, Zhang H F. Safety evaluation of feeds from genetically modified crops on livestock and poultry. Scientia Agricultura Sinica, 2015, 48(6): 1205-1218. (in Chinese)
[8]    包琪, 贺晓云, 黄昆仑. 转基因食品安全性评价研究进展. 生物安全学报, 2014, 23(4): 248-252.
Bao Q, He X Y, Huang K L. Review of food safety evaluation on genetically modified food. Journal of Biosafety, 2014, 23(4): 248-252. (in Chinese)
[9]    Toshiki T, Chantal T, Corinne R, TOSHIO K, EAPPEN  A, MARI K, NATUO K, JEAN-LUC T, BERNARD M, GéRARD C, PAUL S, MALCOLM F, JEAN-CLAUDE P, PIERRE C. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology, 2000, 18(1): 81-84.
[10]   Schetelig M F, Götschel F, Viktorinová I, Handler A M, Wimmer E A. Recombination technologies for enhanced transgene stability in bioengineered insects. Genetica, 2011, 139(1): 71-78.
[11]   Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K. A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Research, 2007, 16(4): 449-465.
[12]   Li Z, You L, Zeng B, Ling L, Xu J, Chen X, Zhang Z, Palli S R, Huang Y, Tan A. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proceedings of the Royal Society B-Biological Sciences, 2015, 282(1809): 20150513.
[13]   Thomas J L, Da Rocha M, Besse A, Mauchamp B, Chavancy G. 3×P3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochemistry and Molecular Biology, 2002, 32(3): 247-253.
[14]   Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nature Biotechnology, 2003, 21(1): 52-56.
[15]   Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y. A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Bioscience, Biotechnology and Biochemistry, 2007, 71(12): 2943-2951.
[16]   Uhlí?ová M, Asahina M, Riddiford L M, Jindra M. Heat-inducible transgenic expression in the silkmoth Bombyx mori. Development Genes and Evolution, 2002, 212(3): 145-151.
[17]   Imamura M, Nakahara Y, Kanda T, Tamura T, Taniai K. A transgenic silkworm expressing the immune-inducible cecropin B-GFP reporter gene. Insect Biochemistry and Molecular Biology, 2006, 36(5): 429-434.
[18]   Karasaki N, Mon H, Takahashi M, Lee J M, Koga K, Kawaguchi Y, Kusakabe T. Establishment of tetracycline- inducible gene expression systems in the silkworm, Bombyx mori. Biotechnology Letters, 2009, 31(4): 495-500.
[19]   Tan A, Fu G, Jin L, Guo Q, Li Z, Niu B, Meng Z, Morrison N I, Alphey L, Huang Y. Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6766-6770.
[20]   Tatsuke T, Lee J M, Kusakabe T, Iiyama K, Sezutsu H, Uchino K. Tightly controlled tetracycline-inducible transcription system for explosive gene expression in cultured silkworm cells. Archives of insect biochemistry and physiology, 2013, 82(4): 173-182.
[21] Imamura M, Nakai J, Inoue S, Quan G X, Kanda T, Tamura T. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics, 2003, 165(3): 1329-1340.
[22]   Nakayama G, Kawaguchi Y, Koga K, KUSAKABE T. Site-specific gene integration in cultured silkworm cells mediated by φC31 integrase. Molecular Genetics and Genomics, 2006, 275(1): 1-8.
[23]   Yonemura N, Tamura T, Uchino K, Kobayashi I, Tatematsu K, Iizuka T, Sezutsu H, Muthulakshmi M, Nagaraju J, Kusakabe T. PhiC31 integrase-mediated cassette exchange in silkworm embryos. Molecular Genetics and Genomics, 2012, 287(9): 731-739.
[24]   Yonemura N, Tamura T, Uchino K, Kobayashi I, Tatematsu K, Iizuka T, TSUBOTA T, Sezutsu H, Muthulakshmi M, Nagaraju J, Kusakabe T. phiC31- integrase-mediated, site-specific integration of transgenes in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Applied Entomology and Zoology, 2013, 48(3): 265-273.
[25]   Long D P, Zhao A C, Xu L X, Lu W J, Guo Q, Zhang Y, Xiang Z H. In vivo site-specific integration of transgene in silkworm via PhiC31 integrase-mediated cassette exchange. Insect Biochemistry and Molecular Biology, 2013, 43(11): 997-1008.
[26]   Long D P, Zhao A C, Chen X J, Zhang Y, Lu W J, Guo Q, Handler A M, Xiang Z H. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori. PLoS One, 2012, 7(6): e40150.
[27]   Long D P, Lu W J, Hao Z Z, Xiang Z H, Zhao A C. Highly efficient and inducible DNA excision in transgenic silkworms using the FLP/FRT site-specific recombination system. Transgenic Research, 2016, 25(6): 795-811.
[28]   Kômoto N, Tomita S. Development of a clonal analysis system in the silkworm, Bombyx mori, mediated by FLP and FRT. Journal of Insect Biotechnology and Sericology, 2012, 81(2): 63-67.
[29]   Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P. Chromosomal transposition of PiggyBac  in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(27): 9290-9295.
[30]   Horn C, Offen N, Nystedt S, Hacker U, Wimmer E A. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics, 2003, 163(2): 647-661.
[31]   Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K I, Iizuka T, Yonemura N, Mita K, Tamura T. Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38(12): 1165-1173.
[32]   张雨丽, 张桂征, 闭立辉, 祁广军, 赵爱春. 转绿色荧光蛋白基因家蚕品系的纯化与综合经济性状改良. 蚕业科学, 2013, 39(2): 384-389.
Zhang Y L, Zhang G Z, Bi L H, Qi G J, Zhao A C. Purification and comprehensive economic trait improvement of transgenic Bombyx mori lines with enhanced green fluorescent protein gene. Science of Sericulture, 2013, 39(2): 384-389. (in Chinese)
[33]   Goldsmith M R, Shimada T, Abe H. The genetics and genomics of the silkworm, Bombyx mori. Annual Review of Entomology, 2005, 50: 71-100.
[34]   Xu H F, Xia Q Y, Liu C, Cheng T C, Zhao P, Duan J, Zha X F, Liu S P. Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori. Molecular Genetics and Genomics, 2006, 276(1): 31-40.
[35]   Daimon T, Mitsuhiro M, Katsuma S, Abe H, Mita K, Shimada T. Recent transposition of yabusame, a novel piggyBac- like transposable element in the genome of the silkworm, Bombyx mori. Genome, 2010, 53(8): 585-593.
[36]   Finnegan D J. Transposable elements. Current Opinion in Genetics and Development, 1992, 2(6): 861-867.
[37]   Long D P, Lu W J, Zhang Y L, Bi L H, Xiang Z H, Zhao A C. An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori. Scientific Reports, 2015, 5: 8802.
[38]   Duan J p, Xu H f, Ma S y, Guo H z, Wang F, Zhao P, Xia Q Y. Cre-mediated targeted gene activation in the middle silk glands of transgenic silkworms (Bombyx mori). Transgenic Research, 2013, 22(3): 607-619.
[39]   Horn C, Handler A M. Site-specific genomic targeting in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35): 12483-12488.
[40]   Oberstein A, Pare A, Kaplan L, Small S. Site-specific transgenesis by Cre-mediated recombination in Drosophila. Nature Methods, 2005, 2(8): 583-585.
[41]   Wimmer E A. Insect transgenesis by site-specific recombination. Nature Methods, 2005, 2(8): 580-582.
[42]   Schetelig M F, Handler A M. A functional comparison of the 3×P3 promoter by recombinase-mediated cassette exchange in Drosophila and a tephritid fly, Anastrepha suspensa. G3 (Genes, Genomes, Genetics), 2013, 3: 687-693.
[43]   Haghighat-Khah R E, Scaife S, Martins S, St John O, Matzen K J, Morrison N, Alphey L. Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth. PLoS One, 2015, 10(4): e0121097.
[44]   Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochemistry and Molecular Biology, 2010, 40(10): 759-765.
[45]   Ma S Y, Zhang S L, Wang F, Liu Y, Liu Y Y, Xu H F, Liu C, Lin Y, Zhao P, Xia Q Y. Highly efficient and specific genome editing in silkworm using custom TALENs. PloS One, 2012, 7(9): e45035.
[46]   Wang Y, Li Z, Xu J, Zeng B, Ling L, You L, Chen Y, Huang Y, Tan A. The CRISPR/Cas System mediates efficient genome engineering in Bombyx mori. Cell Research, 2013, 23(12): 1414-1416.
[47]   Daimon T, Kiuchi T, Takasu Y. Recent progress in genome engineering techniques in the silkworm, Bombyx mori. Development, Growth and Differentiation, 2014, 56(1): 14-25.
[48]   Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, SUZUKI K T. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature Communications, 2014, 5: 5560.
[49]   Wang Y, Tan A, Xu J, Li Z, Zeng B, Ling L, You L, Chen Y, James A A, Huang Y. Site-specific, TALENs-mediated transformation of Bombyx mori. Insect Biochemistry and Molecular Biology, 2014, 55: 26-30.
[50]   Xu J, Bi H, Chen R, Aslam A F, Li Z, Ling L, Zeng B, Huang Y, Tan A. Transgenic characterization of two testis-specific promoters in the silkworm, Bombyx mori. Insect Molecular Biology, 2014, 24(2): 183-190.
[51]   赵爱春, 龙定沛, 谭兵, 许龙霞, 向仲怀. FLP/FRT位点特异性重组系统在高等真核生物中的研究进展. 中国农业科学, 2011, 44(15): 3252-3263.
Zhao A C, Long D P, Tan B, Xu L X, Xiang Z H. Progress in research of FLP/FRT site-specific recombination system in higher eukaryotes. Scientia Agricultura Sinica, 2011, 44(15): 3252-3263. (in Chinese)
[52]   龙定沛, 谭兵, 赵爱春, 许龙霞, 向仲怀. Cre/lox位点特异性重组系统在高等真核生物中的研究进展. 遗传, 2012, 34(2): 177-189.
Long D P, Tan B, Zhao A C, Xu L X, Xiang Z H. Progress in Cre/lox site-specific recombination system in higher eukaryotes. Hereditas, 2012, 34(2): 177-189. (in Chinese)
[53]   Xu L X, Zhao A C, Long D P, Tan B, Xiang Z H. φC31 integrase mediates genome manipulation in higher eukaryotes. Science of Sericulture, 2011, 37(3): 507-519.
[1] Jing LIU,Chao LI,JinXiong LIU,Rui HE,YanRong SUN. The Role of High-Level Biosafety Laboratories in Biosafety and Consideration About Their Development [J]. Scientia Agricultura Sinica, 2020, 53(1): 74-80.
[2] ZHAO Man, TANG JinRong, NIU LinLin, CHEN Lin, LIANG GeMei. Ecological Safety Evaluation of Different Bt Proteins on the Predator Chrysopa pallens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1541-1552.
[3] GUO San-dui, WANG Yuan, SUN Guo-qing, JIN Shi-qiao, ZHOU Tao, MENG Zhi-gang, ZHANG Rui. Twenty Years of Research and Application of Transgenic Cotton in China [J]. Scientia Agricultura Sinica, 2015, 48(17): 3372-3387.
[4] WANG Gen-Ping, DU Wen-Ming, XIA Lan-Qin. Current Status of Transgenic Technologies for Safety Consideration in Plants and Future Perspectives [J]. Scientia Agricultura Sinica, 2014, 47(5): 823-843.
[5] LI Chen,YAN Xiao-hong,YANG Jie,YANG Qing,WEI Wen-hui
. Plant Artificial Chromosome: The Vector for the Next Generation of Genetic Engineering [J]. Scientia Agricultura Sinica, 2011, 44(4): 657-663 .
[6] ZHAO Ai-Chun, LONG Ding-Pei, TAN Bing, XU Long-Xia, XIANG Zhong-Huai. Progress in Research of FLP/FRT Site-Specific Recombination System in Higher Eukaryotes [J]. Scientia Agricultura Sinica, 2011, 44(15): 3252-3263.
[7] SUN Jia-li,YAN Xiao-hong,WANG Li-jun,WEI Wen-hui
. Progress in the Application Study of Cre/loxP Site-Specific Recombination System in Plants#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1099-1107 .
[8] SONG Hong-Yuan,REN Xue-Song,SI Jun,LI Cheng-qiong,SONG Ming,LEI Jian-Jun
. Construction the Engineered Restoring Line of Tomato Engineered Male Sterile Line by Cre/lox Site-Specific Recombination System
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3581-3591 .
[9] . Dynamics in kanamycin-resistant bacterial population and shift of nptII gene in the phyllosphere of insect-resistant transgenic cotton [J]. Scientia Agricultura Sinica, 2007, 40(11): 2488-2494 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!