[1] |
YU Y, FU J, XU Y G, ZHANG J W, REN F, ZHAO H W, TIAN S L, GUO W, TU X L, ZHAO J, JIANG D W, ZHAO J B, WU W Y, WANG G C, MA R C, JIANG Q, WEI J H, XIE H. Genome re-sequencing reveals the evolutionary history of peach fruit edibility. Nature Communications, 2018, 9(1): 5404.
doi: 10.1038/s41467-018-07744-3
pmid: 30573726
|
[2] |
FAUST M, TIMON B. Origin and dissemination of peach. Agricultural and Food Sciences, 2010, 17: 331-339.
|
[3] |
ZHOU H, LIAO L, XU S L, REN F, ZHAO J B, OGUTU C, WANG L, JIANG Q, HAN Y P. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. Plant Molecular Biology, 2018, 98(1/2): 169-183.
|
[4] |
RAHIM M A, BUSATTO N, TRAINOTTI L. Regulation of anthocyanin biosynthesis in peach fruits. Planta, 2014, 240(5): 913-929.
doi: 10.1007/s00425-014-2078-2
pmid: 24827911
|
[5] |
LI Y, CAO K, LI N, ZHU G R, FANG W C, CHEN C W, WANG X W, GUO J, WANG Q, DING T Y, WANG J, GUAN L P, WANG J X, LIU K Z, GUO W W, ARÚS P, HUANG S W, FEI Z J, WANG L R. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Research, 2021, 31(4): 592-606.
doi: 10.1101/gr.261032.120
pmid: 33687945
|
[6] |
LU Z H, CAO H H, PAN L, NIU L, WEI B, CUI G C, WANG L W, YAO J L, ZENG W F, WANG Z Q. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). The Plant Journal, 2021, 107(5): 1320-1331.
|
[7] |
CAMPA M, MIRANDA S, LICCIARDELLO C, LASHBROOKE J G, DALLA COSTA L, GUAN Q M, SPÖK A, MALNOY M. Application of new breeding techniques in fruit trees. Plant Physiology, 2024, 194(3): 1304-1322.
|
[8] |
BECKMAN T G, ALCAZAR J R, SHERMAN W B, WERNER D J. Evidence for qualitative suppression of red skin color in peach. HortScience, 2005, 40(3): 523-524.
|
[9] |
BECKMAN T G, SHERMAN W B. Probable qualitative inheritance of full red skin color in peach. HortScience, 2003, 38(6): 1184-1185.
|
[10] |
RAVAGLIA D, ESPLEY R V, HENRY-KIRK R A, ANDREOTTI C, ZIOSI V, HELLENS R P, COSTA G, ALLAN A C. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13: 68.
doi: 10.1186/1471-2229-13-68
pmid: 23617716
|
[11] |
INITIATIVE I P G, VERDE I, ABBOTT A G, SCALABRIN S, JUNG S, SHU S Q, MARRONI F, ZHEBENTYAYEVA T, DETTORI M T, GRIMWOOD J, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45(5): 487-494.
doi: 10.1038/ng.2586
pmid: 23525075
|
[12] |
TUAN P A, BAI S L, YAEGAKI H, TAMURA T, HIHARA S, MORIGUCHI T, ODA K. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biology, 2015, 15(1): 280.
|
[13] |
BRETÓ M P, CANTÍN C M, IGLESIAS I, ARÚS P, EDUARDO I. Mapping a major gene for red skin color suppression (highlighter) in peach. Euphytica, 2016, 213(1): 14.
|
[14] |
ZHAO L, SUN J L, CAI Y M, YANG Q R, ZHANG Y Q, OGUTU C O, LIU J J, ZHAO Y, WANG F R, HE H P, ZHENG B B, HAN Y P. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persica. Tree Physiology, 2022, 42(8): 1662-1677.
|
[15] |
赵慧芳, 王小敏, 闾连飞, 吴文龙, 李维林. 黑莓果实中花色苷的提取和测定方法研究. 食品工业科技, 2008, 29(5): 176-179.
|
|
ZHAO H F, WANG X M, LÜ L F, WU W L, LI W L. Study on the extraction and assay method of anthocyanin in blackberry fruits. Science and Technology of Food Industry, 2008, 29(5): 176-179. (in Chinese)
|
[16] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8
pmid: 32585190
|
[17] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[18] |
ZHOU H, KUI L W, WANG H L, GU C, DARE A P, ESPLEY R V, HE H P, ALLAN A C, HAN Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal, 2015, 82(1): 105-121.
doi: 10.1111/tpj.12792
pmid: 25688923
|
[19] |
GUO J, CAO K, DENG C, LI Y, ZHU G R, FANG W C, CHEN C W, WANG X W, WU J L, GUAN L P, WU S, GUO W W, YAO J L, FEI Z J, WANG L R. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biology, 2020, 21(1): 258.
doi: 10.1186/s13059-020-02169-y
pmid: 33023652
|
[20] |
王蛟, 曹珂, 王玲玲, 王力荣. PpMYB10.1启动子483 bp缺失与红肉桃果肉颜色形成关系的研究. 植物遗传资源学报, 2023, 24(3): 758-766.
doi: 10.13430/j.cnki.jpgr.20220909001
|
|
WANG J, CAO K, WANG L L, WANG L R. Deciphering the genetic effect of a 483 bp deletion in the PpMYB10.1 promoter to determine intensities of the red-colored flesh peach. Journal of Plant Genetic Resources, 2023, 24(3): 758-766. (in Chinese)
doi: 10.13430/j.cnki.jpgr.20220909001
|
[21] |
FALCHI R, VENDRAMIN E, ZANON L, SCALABRIN S, CIPRIANI G, VERDE I, VIZZOTTO G, MORGANTE M. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. The Plant Journal, 2013, 76(2): 175-187.
doi: 10.1111/tpj.12283
pmid: 23855972
|
[22] |
WANG J, CAO K, LI Y, WU J L, LI W Q, WANG Q, ZHU G R, FANG W C, CHEN C W, WANG X W, DONG W X, LIU W S, WANG L R. Genome variation and LTR-RT analyses of an ancient peach landrace reveal mechanism of blood-flesh fruit color formation and fruit maturity date advancement. Horticulture Research, 2023, 11(1): uhad265.
|
[23] |
ZHOU P, LEI S R, ZHANG X D, WANG Y H, GUO R, YAN S B, JIN G, ZHANG X T. Genome sequencing revealed the red-flower trait candidate gene of a peach landrace. Horticulture Research, 2023, 10(11): uhad210.
|
[24] |
CHENG J, LIAO L, ZHOU H, GU C, WANG L, HAN Y P. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers. Journal of Experimental Botany, 2015, 66(22): 7227-7239.
doi: 10.1093/jxb/erv419
pmid: 26357885
|
[25] |
ZHAO Y L, LI Y, CAO K, YAO J L, BIE H L, KHAN I A, FANG W C, CHEN C W, WANG X W, WU J L, GUO W W, WANG L R. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach. Plant Physiology, 2023, 193(1): 448-465.
|
[26] |
LIAN X D, ZHANG H P, JIANG C, GAO F, YAN L, ZHENG X B, CHENG J, WANG W, WANG X B, YE X, LI J D, ZHANG L L, LI Z Q, TAN B, FENG J C. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. Plant Biotechnology Journal, 2022, 20(5): 886-902.
|
[27] |
KIM H J, KIM Y K, PARK J Y, KIM J. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. The Plant Journal, 2002, 29(6): 693-704.
|
[28] |
FUKAMATSU Y, TAMURA T, HIHARA S, ODA K. Mutations in the CCD4 carotenoid cleavage dioxygenase gene of yellow-flesh peaches. Bioscience, Biotechnology, and Biochemistry, 2013, 77(12): 2514-2516.
|
[29] |
范家琪, 吴金龙, 李勇, 别航灵, 王蛟, 郭健, 曹珂, 王力荣. 桃类胡萝卜素合成关键基因PpCCD4的表达与启动子活性分析. 果树学报, 2020, 37(9): 1271-1280.
|
|
FAN J Q, WU J L, LI Y, BIE H L, WANG J, GUO J, CAO K, WANG L R. Expression and promoter activity analysis of PpCCD4 closely related to carotenoid synthesis in peach. Journal of Fruit Science, 2020, 37(9): 1271-1280. (in Chinese)
|
[30] |
HUANG D, YUAN Y, TANG Z Z, HUANG Y, KANG C Y, DENG X X, XU Q. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. Plant, Cell & Environment, 2019, 42(11): 3092-3104.
|
[31] |
程莉, 杨胜男, 朱延松, 王旭, 赵婉彤, 李仁静, 李沛, 苑忠杰, 江东. 柚果肉颜色遗传变异分析及候选基因挖掘. 中国农业科学, 2023, 56(17): 3420-3434. doi: 10.3864/j.issn.0578-1752.2023.17.015.
|
|
CHENG L, YANG S N, ZHU Y S, WANG X, ZHAO W T, LI R J, LI P, YUAN Z J, JIANG D. Genetic variation analysis and candidate genes mining of regulating flesh color in pomelo. Scientia Agricultura Sinica, 2023, 56(17): 3420-3434. doi: 10.3864/j.issn.0578-1752.2023.17.015. (in Chinese)
|
[32] |
LU P J, WANG S S, GRIERSON D, XU C J. Transcriptomic changes triggered by carotenoid biosynthesis inhibitors and role of Citrus sinensis phosphate transporter 4;2 (CsPHT4;2) in enhancing carotenoid accumulation. Planta, 2019, 249(1): 257-270.
|
[33] |
WANG S, LI L X, FANG Y, LI D, MAO Z L, ZHU Z H, CHEN X S, FENG S Q. MdERF1B-MdMYC2 module integrates ethylene and jasmonic acid to regulate the biosynthesis of anthocyanin in apple. Horticulture Research, 2022, 9: uhac142.
|
[34] |
WANG S, LI L X, ZHANG Z, FANG Y, LI D, CHEN X S, FENG S Q. Ethylene precisely regulates anthocyanin synthesis in apple via a module comprising MdEIL1, MdMYB1, and MdMYB17. Horticulture Research, 2022, 9: uhac034.
|
[35] |
NI J B, WANG S M, YU W J, LIAO Y F, PAN C, ZHANG M M, TAO R Y, WEI J, GAO Y H, WANG D S, BAI S L, TENG Y W. The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear. The Plant Cell, 2023, 35(6): 2271-2292.
doi: 10.1093/plcell/koad077
pmid: 36916511
|
[36] |
NI J B, PREMATHILAKE A T, GAO Y H, YU W J, TAO R Y, TENG Y W, BAI S L. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. The Plant Journal, 2021, 105(1): 167-181.
doi: 10.1111/tpj.15049
pmid: 33111423
|
[37] |
NI J B, ZHAO Y, TAO R Y, YIN L, GAO L, STRID Å, QIAN M J, LI J C, LI Y J, SHEN J Q, TENG Y W, BAI S L. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnology Journal, 2020, 18(5): 1223-1240.
doi: 10.1111/pbi.13287
pmid: 31675761
|
[38] |
PIRONA R, EDUARDO I, PACHECO I, DA SILVA LINGE C, MICULAN M, VERDE I, TARTARINI S, DONDINI L, PEA G, BASSI D, ROSSINI L. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology, 2013, 13: 166.
doi: 10.1186/1471-2229-13-166
pmid: 24148786
|
[39] |
CAO K, PAN H F, ZHAO Y L, BIE H L, WANG J, ZHU G R, FANG W C, CHEN C W, WANG X W, LI Y, WU J L, KHAN I A, ZHANG J Y, WANG L R. Discovery of a key gene associated with fruit maturity date and analysis of its regulatory pathway in peach. Plant Science, 2023, 333: 111735.
|
[40] |
ZHANG L, XU Y, LI Y T, ZHENG S S, ZHAO Z M, CHEN M L, YANG H J, YI H L, WU J X. Transcription factor CsMYB77 negatively regulates fruit ripening and fruit size in citrus. Plant Physiology, 2024, 194(2): 867-883.
|
[41] |
QIAN M J, SUN Y W, ALLAN A C, TENG Y W, ZHANG D. The red sport of 'Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry, 2014, 107: 16-23.
doi: 10.1016/j.phytochem.2014.08.001
pmid: 25168359
|
[42] |
JIANG S H, WANG N, CHEN M, ZHANG R, SUN Q G, XU H F, ZHANG Z Y, WANG Y C, SUI X Q, WANG S F, FANG H C, ZUO W F, SU M Y, ZHANG J, FEI Z J, CHEN X S. Methylation of MdMYB1 locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. Plant Biotechnology Journal, 2020, 18(8): 1736-1748.
doi: 10.1111/pbi.13337
pmid: 31930634
|
[43] |
XIA H, SHEN Y Q, HU R P, WANG J, DENG H H, LIN L J, LV X L, DENG Q X, XU K F, LIANG D. Methylation of MYBA1 is associated with the coloration in "Manicure Finger" grape skin. Journal of Agricultural and Food Chemistry, 2021, 69(51): 15649-15659.
|