中国农业科学 ›› 2023, Vol. 56 ›› Issue (1): 144-155.doi: 10.3864/j.issn.0578-1752.2023.01.011
李旭飞(),杨盛迪,李松琦,刘海楠,裴茂松,韦同路,郭大龙,余义和()
收稿日期:
2022-03-19
接受日期:
2022-07-19
出版日期:
2023-01-01
发布日期:
2023-01-17
通讯作者:
余义和
作者简介:
李旭飞,E-mail:基金资助:
LI XuFei(),YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe()
Received:
2022-03-19
Accepted:
2022-07-19
Online:
2023-01-01
Published:
2023-01-17
Contact:
YiHe YU
摘要:
【目的】通过克隆细胞分裂素脱氢酶/氧化酶基因VlCKX4及其启动子,进行表达特性分析和启动子活性分析并进行转录因子预测,为深入解析VlCKX4介导细胞分裂素信号途径调控葡萄坐果的分子机制提供依据。【方法】使用生物信息学方法分析‘巨峰’葡萄(Vitis vinifera×Vitis labrusca)细胞分裂素氧化酶/脱氢酶4(VlCKX4)的序列特征;利用PCR技术克隆该基因以及它的启动子,使用实时荧光定量PCR(real-time quantitative PCR,qRT-PCR)分析VlCKX4的表达特性,GUS活性试验用于分析其启动子活性;利用PlantTFDB、CisBP等转录调控数据库对VlCKX4的转录调控关系进行预测分析,输出结果使用Gephi软件进行可视化。【结果】VlCKX4全长1 582 bp,其中包含1 566 bp的开放阅读框,编码522个氨基酸,具有家族特征的FAD结构域和细胞分裂素结合(ck-binding)结构域。qRT-PCR结果表明VlCKX4在花序中高表达,其次是叶片,在卷须中表达量最低;细胞分裂素CPPU处理后VlCKX4表达量先下降后上升,细胞分裂素抑制剂洛伐他汀(Lov)处理后VlCKX4表达量先上升后下降。顺式元件分析表明VlCKX4启动子中含有吲哚乙酸、茉莉酸甲酯等响应元件;GUS化学组织染色试验表明,VlCKX4响应这些激素的处理。VlCKX4转录调控预测分析结果显示,MYB、DOF和WRKY类转录因子对其进行转录调控,结合转录组数据和共表达关系确定WRKY20、DOF1.5和MYB59为关键候选转录因子。【结论】葡萄VlCKX4受到细胞分裂素CPPU的诱导,VlCKX4启动子受到WRKY20、DOF1.5和MYB59转录因子的调控,参与促进葡萄坐果过程。
李旭飞,杨盛迪,李松琦,刘海楠,裴茂松,韦同路,郭大龙,余义和. 葡萄VlCKX4表达特性分析与转录调控预测[J]. 中国农业科学, 2023, 56(1): 144-155.
LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape[J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
表1
在本研究中使用到的引物"
基因名称 Gene name | 引物 Primer | |
---|---|---|
正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) | |
FL-VlCKX4 | CATGGCTAAAACTTATTCAATCCCAACAT | GTCCAGTTCTACAGCTTAAATGGAATT |
Pro-VlCKX4 | CCATCAACCCGACAGGATAACACC | GGACAAGTTTGCCAAAGTCCCTAGC |
GUS-ProVlCKX4 | GGTGGACTCCTCTTAGAATTCCCAT…ACC | TGGGCCCGGCGCGCCGAATTCGGAC…AGC |
QT-VlCKX4 | GACCTGTTTTATGCCGTTCTG | CATTCGCACCCACTTCACTC |
Ubiqutin I | GTGGTATTATTGAGCCATCCTT | AACCTCCAATCCAGTCATCTAC |
表2
靶向VlCKX4的转录因子预测"
基因ID Gene ID | 类型 Type | NR 注释 NR_annotation |
---|---|---|
Vitvi10g00581 | DOF | 锌指蛋白DOF1.5 DOF zinc finger protein DOF1.5 [Vitis vinifera] |
Vitvi08g01336 | MYB | 转录因子DIVARICATA Transcription factor DIVARICATA [Vitis vinifera] |
Vitvi19g00617 | WRKY | 可能的WRKY20转录因子 Probable WRKY transcription factor 20 [Vitis vinifera] |
Vitvi18g00858 | DOF | 锌指蛋白DOF3.4 DOF zinc finger protein DOF3.4 [Vitis vinifera] |
Vitvi16g00106 | MYB | WER转录因子 Transcription factor WER [Vitis vinifera] |
Vitvi12g00055 | NLP | NLP3蛋白 Protein NLP3 isoform X1 [Vitis vinifera] |
Vitvi04g01842 | MYB | Myb类蛋白 Myb protein-like [Vitis vinifera] |
Vitvi04g00854 | HD-zip | HD-zip类蛋白ROC8 Homeobox-leucine zipper protein ROC8 [Vitis vinifera] |
Vitvi01g00980 | TCP | TCP15转录因子 Transcription factor TCP15 [Vitis vinifera] |
Vitvi16g00894 | MAKC | MADS-box转录因子 MADS-box transcription factor 6 isoform X1 [Vitis vinifera] |
Vitvi18g01067 | BPC | GAGA结合转录激活因子 GAGA-binding transcriptional activator BBR/BPC6-like [Vitis vinifera] |
Vitvi15g01540 | NAC | NAC结构蛋白 NAC domain-containing protein 62-like isoform X1 [Vitis vinifera] |
Vitvi18g00406 | MYB | MYB39转录因子 Transcription factor MYB39 [Vitis vinifera] |
Vitvi01g01844 | WRKY | 可能的WRKY57转录因子 Probable WRKY transcription factor 57 [Vitis vinifera] |
Vitvi15g01539 | NAC | NTM1-like9蛋白 Protein NTM1-like 9 isoform X1 [Vitis vinifera] |
Vitvi12g00121 | HSF | 热胁迫相关转录因子A-4b Heat stress transcription factor A-4b [Vitis vinifera] |
Vitvi14g01519 | TCP | 转录因子TCP20 Transcription factor TCP20 [Vitis vinifera] |
Vitvi15g00776 | MAKC | MADS-box 3蛋白 MADS-box protein 3 [Vitis vinifera] |
Vitvi03g01059 | MAKC | MADS-box蛋白 MADS-box protein JOINTLESS isoform X1 [Vitis vinifera] |
Vitvi14g01740 | MYB | 转录因子MYB98 Transcription factor MYB98 [Vitis vinifera] |
Vitvi14g01398 | TCP | 转录因子TCP13 Transcription factor TCP13 [Vitis vinifera] |
Vitvi14g01960 | MYB | MYB306相关蛋白 Myb-related protein 306 [Vitis vinifera] |
Vitvi15g00708 | YABBY | 调控边界的YABBY Axial regulator YABBY 1 isoform X2 [Vitis vinifera] |
Vitvi04g01404 | MAKC | MADS-box蛋白TM6 Agamous-like MADS-box protein TM6 [Vitis vinifera] |
Vitvi14g00612 | MYB | Myb相关蛋白Myb4 Myb-related protein Myb4 [Vitis vinifera] |
Vitvi06g00414 | MYB | MYB59转录因子 Transcription factor MYB59 [Vitis vinifera] |
Vitvi17g00021 | LEAFY | LEAFY类蛋白 LEAFY-like protein [Vitis hybrid cultivar] |
表3
VlCKX4启动子顺式作用元件预测"
顺式元件 Cis-element | 序列 Sequence | 功能 Function | 元件数量 Number |
---|---|---|---|
TCT-motif | TCTTAC | 光调控元件 Involved in light responsiveness | 1 |
MRE | AACCTAA | MYB结合位点参与光响应 MYB binding site involved in light responsiveness | 1 |
AT1-motif | AATTATTTTTTATT | 光调控元件 Involved in light responsiveness | 1 |
TCA-element | CCATCTTTTT | 水杨酸响应元件 Involved in salicylic acid responsiveness | 1 |
TATC-box | TATCCCA | 赤霉素响应元件 Involved in gibberellin-responsiveness | 1 |
LTR | CCGAAA | 低温响应元件 Involved in low-temperature responsiveness | 1 |
AAGAA-motif | GAAAGAA | 未知 Unknown | 1 |
ABRE3a | TACGTG | 未知 Unknown | 1 |
WRE3 | CCACCT | 未知 Unknown | 1 |
WUN-motif | AAATTTCTT | 未知 Unknown | 1 |
ABRE4 | CACGTA | 未知 Unknown | 1 |
box S | AGCCACC | 未知 Unknown | 1 |
Myb | TAACTG | 未知 Unknown | 1 |
GATA-motif | GATAGGG | 光调控元件 Involved in light responsiveness | 2 |
TGA-element | AACGAC | 生长素响应元件 Auxin-responsive element | 2 |
circadian | CAAAGATATC | 参与昼夜节律的元件 Components involved in the circadian rhythm | 2 |
CGTCA-motif | CGTCA | 茉莉酸甲酯诱导 Methyl jasmonate-responsive element | 2 |
TGACG-motif | TGACG | 茉莉酸甲酯诱导 Methyl jasmonate-responsive element | 2 |
RY-element | CATGCATG | 种子特异性调控 Seed specific regulation element | 2 |
W box | TTGACC | 未知 Unknown | 2 |
as-1 | TGACG | 未知 Unknown | 2 |
MYC | CATTTG | 未知 Unknown | 2 |
ABRE | ACGTG | 脱落酸响应元件 In the abscisic acid responsiveness | 3 |
Box 4 | ATTAAT | 光调控元件 Involved in light responsiveness | 3 |
MYB | TAACCA/ | 未知 Unknown | 3 |
MYB-like sequence | TAACCA | 未知 Unknown | 3 |
I-box | GGATAAGGTG | 光调控元件 Involved in light responsiveness | 5 |
GA-motif | ATAGATAA | 光调控元件 Involved in light responsiveness | 5 |
G-box | TACGTG | 光调控元件 Involved in light responsiveness | 5 |
STRE | AGGGG | 未知 Unknown | 5 |
GT1-motif | GGTTAAT/GGTTAA/ | 光调控元件 Involved in light responsiveness | 6 |
TATA-box | TATA | 核心启动元件 Core promoter element around -30 of transcription start | 19 |
CAAT-box | CAAAT | 启动子区和增强子区常见元件 Common elements in promoter and enhancer regions | 25 |
[1] |
OKATAN V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Horticulturae, 2020, 32(1): 79-85.
doi: 10.2478/fhort-2020-0008 |
[2] |
SOVAK M. Grape extract, resveratrol, and its analogs: A review. Journal of Medicinal Food, 2001, 4(2): 93-105.
pmid: 12639418 |
[3] |
YU Y H, BIAN L, YY K K, YANG S D, GUO D L. Vitis vinifera bZIP14 functions as a transcriptional activator and enhances drought stress resistance via suppression of reactive oxygen species. Journal of Berry Research, 2020, 10(4): 547-558.
doi: 10.3233/JBR-200523 |
[4] |
YU Y H, MENG X X, GUO D L, YANG S D, ZHANG G H, LIANG Z C. Grapevine U-box E3 ubiquitin ligase VlPUB38 negatively regulates fruit ripening by facilitating abscisic- aldehyde oxidase degradation. Plant and Cell Physiology, 2020, 61(12): 2043-2054.
doi: 10.1093/pcp/pcaa118 |
[5] |
GUO D L, XI F F, YU Y H, ZHANG X Y, ZHANG G H, ZHONG G Y. Comparative RNA-Seq profiling of berry development between table grape ‘Kyoho’ and its early-ripening mutant ‘Fengzao’. BMC Genomics, 2016, 17(1): 795.
doi: 10.1186/s12864-016-3051-1 |
[6] |
ZABADAL T J, BUKOVAC M J. Effect of CPPU on fruit development of selected seedless and seeded grape cultivars. HortScience, 2006, 41(1): 154-157.
doi: 10.21273/HORTSCI.41.1.154 |
[7] |
QUINET M, BUYENS C, DOBREV P I, MOTYKA V, JACQUEMART A L. Hormonal regulation of early fruit development in european pear (Pyrus communis cv. ‘Conference’). Horticulturae, 2019, 5(1). doi: 10.3390/horticulturae5010009.
doi: 10.3390/horticulturae5010009 |
[8] | SARKAR M D, SHAH M, KABIR M H. Flower and fruit setting of summer tomato regulated by plant hormones. Applied Science Reports, 2014, 7: 117-120. |
[9] |
HWANG I. Cytokinin signaling networks. Annual review of plant biology, 2012, 63: 353-380.
doi: 10.1146/annurev-arplant-042811-105503 pmid: 22554243 |
[10] |
WERNER T, MOTYKA V, LAUCOU V, SMETS R, VAN ONCKELEN H, SCHMÜLLING T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell, 2003, 15(11): 2532-2550.
doi: 10.1105/tpc.014928 |
[11] | BECHTOLD N, BOUCHEZ D. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Gene Transfer to plants, 1995:19-23. |
[12] |
KRIZEK B A. Making bigger plants: Key regulators of final organ size. Current Opinion in Plant Biology, 2009, 12(1): 17-22.
doi: 10.1016/j.pbi.2008.09.006 pmid: 18951836 |
[13] |
KOPECNY D, BRIOZZO P, POPELKOVA H, SEBELA M, KONCITIKOVA R, SPICHAL L, NISLER J, MADZAK CATHERINE, FREBORT I, LALOUE M, HOUBA H N. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie, 2010, 92(8): 1052-1062.
doi: 10.1016/j.biochi.2010.05.006 pmid: 20478354 |
[16] | SMITH R. Effects of CPPU, a synthetic cytokinin, on fruit set and yield. Sonoma Ctry Grape Day, 2008, 7: 2008. |
[17] |
CURRY E A, GREENE D W. CPPU influences fruit quality, fruit set, return bloom, and preharvest drop of apples. HortScience, 1993, 28(2): 115-119.
doi: 10.21273/HORTSCI.28.2.115 |
[18] | NIMBOLKAR P K, RAI P N, MISHRA D S, SINGH S K, SINGH A K, KUMAR J. Effect of CPPU, NAA and salicylic acid on vegetative growth, fruit retention and yield of pear [Pyrus pyrifolia (Burm.) Nakai] cv Gola. Environment and Ecology, 2016, 34(2): 462-465. |
[19] | ASSAD S A. Effect of CPPU on fruit set, drop, yield and fruit quality of Hollywood and Santarosa plum cultivars. Egyptian Journal of Horticulture, 2013, 2(40): 187-204. |
[20] |
CHEN L, ZHAO J, SONG J C, JAMESON P E. Cytokinin dehydrogenase a genetic target for yield improvement in wheat. Plant Biotechnology Journal, 2020, 18 (3): 614-630.
doi: 10.1111/pbi.13305 |
[21] | ANTOGNOZZI E, FAMIANI F, PROIETTI P, TOMBESI A, FRENGUELLI G. Effect of CPPU (Cytokinin) treatments on fruit anatomical structure and quality in actinidia deliciosa. Acta Horticulturae, 1997, 444(2): 459-465. |
[22] | LEWIS D H, BURGE G K, HOPPING M E, JAMESON P E. Cytokinios and fruit development in the kiwifruit (Actinidia deliciosa) effects of reduced pollination and CPPU application. Horticultural Science, 1996, 98(1): 187-195. |
[23] |
KÖLLMER I, NOVÁK O, STRNAD M, SCHMÜLLING T, WERNER T. Overexpression of the cytosolic cytokinin oxidase/ dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. The Plant Journal, 2014, 78(3): 359-371. doi: 10.1111/tpj.12477.
doi: 10.1111/tpj.12477 |
[24] |
ASHIKARI M, SAKAKIBARA H, LIN S, YAMAMOTO T, TAKASHI T, NISHIMURA A, ANGELES E R, QIAN Q, KITANO H, MATSUOKA M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745. doi: 10.1126/science.1113373.
doi: 10.1126/science.1113373 pmid: 15976269 |
[25] |
TSAI Y C, WEIR N R, HILL K, ZHANG W J, KIM H J, SHIU S H, SCHALLER G E, KIEBER J J. Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology, 2012, 158(4): 1666-1684. doi: 10.1104/pp.111.192765.
doi: 10.1104/pp.111.192765 |
[26] |
ZHANG W, PENG K X, CUI F B, WANG D L, ZHAO J Z, ZHANG Y H, YU N N, WANG Y Y, ZENG D L, WANG Y H, ZHENG Z K, ZHANG K W. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnology Journal, 2020, 19(2): 335-350.
doi: 10.1111/pbi.13467 |
[27] | YU Y H, LI X F, YANG S D, BAN L, YU K K, MENG X X, LIU H N, PEI M S, WEI T L, GUO D L. CPPU-induced changes in energy status and respiration metabolism of grape young berry development in relation to Berry setting. Scientia Horticulturae, 2021, 283: 110084. |
[28] | YU K K, YU Y H, BIAN L, NI P Y, YANG Y J. Genome-wide identification of cytokinin oxidases/dehydrogenase (CKXs) in grape and expression during berry set. Scientia Horticulturae, 2021, 280(223): 109917. |
[29] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. (in Chinese) | |
[30] |
CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743. doi: 10.1046/j.1365-313x.1998.00343.x.
doi: 10.1046/j.1365-313x.1998.00343.x |
[31] |
GU R L, FU J J, GUO S, DUAN F Y, WANG Z K, MI G H, YUAN L X. Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase (CKX) gene family. Journal of Plant Growth Regulation, 2010, 29(4): 428-440. doi: 10.1007/s00344-010-9155-y.
doi: 10.1007/s00344-010-9155-y |
[32] |
LIU L X, WANG W Q, YANG J, ZHANG Y, ZHANG G Y, MA Z Y, WANG X F. Molecular cloning of Ve promoters from Gossypium barbadense and G. hirsutum and functional analysis in Verticillium wilt resistance. Plant Cell, Tissue and Organ Culture, 2018, 135(3): 535-544.
doi: 10.1007/s11240-018-1485-7 |
[33] |
MENG X B, ZHAO W S, LIN R M, WANG M, PENG Y L. Identification of a novel rice bZIP-type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea. Plant Molecular Biology Reporter, 2005, 23(3): 301-302. doi: 10.1007/BF02772762.
doi: 10.1007/BF02772762 |
[34] |
WANG C H, GAO G, CAO S X, XIE Q J, QI H Y. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino. BMC Plant Biology, 2019, 19(1): 75. doi: 10.1186/s12870-019-1678-1.
doi: 10.1186/s12870-019-1678-1 |
[35] |
CHEN C L, YUAN F, LI X Y, MA R C, XIE H. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. Journal of Integrative Agriculture, 2021, 20(5): 1314-1326.
doi: 10.1016/S2095-3119(20)63267-1 |
[36] |
VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic Acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009, 47: 177-206. doi: 10.1146/annurev.phyto.050908.135202.
doi: 10.1146/annurev.phyto.050908.135202 pmid: 19400653 |
[37] |
LI F F, ZHANG L, JI H K, XU Z Y, ZHOU Y, YANG S S. The specific W-boxes of GAPC5 promoter bound by TaWRKY are involved in drought stress response in wheat. Plant Science, 2020, 296: 110460. doi: 10.1016/j.plantsci.2020.110460.
doi: 10.1016/j.plantsci.2020.110460 |
[38] |
CONG L, WU T, LIU H T, WANG H B, ZHANG H Q, ZHAO G P, WEN Y, SHI Q R, XU L F, WANG Z G. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in ‘Dangshansu’ pear. Horticulture Research, 2020, 7: 13. doi: 10.1038/s41438-020-0285-5.
doi: 10.1038/s41438-020-0285-5 |
[39] |
WANG Z M, WONG D C J, WANG Y, XU G Z, REN C, LIU Y F, KUANG Y F, FAN P G, LI S H, XIN H P, LIANG Z C. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiology, 2021, 186(3): 1660-1678. doi: 10.1093/plphys/kiab142.
doi: 10.1093/plphys/kiab142 pmid: 33752238 |
[40] | 杨盛迪, 郭大龙, 裴茂松, 刘海楠, 韦同路, 余义和. 干旱胁迫下葡萄AQP基因家族的鉴定及转录调控网络预测. 果树学报, 2021, 38(10): 1638-1652. |
YANG S D, GUO D L, PEI M S, LIU H N, WEI T L, YU Y H. Identification of grapevine AQP family and prediction for transcriptional regulatory network under drought stress. Journal of Fruit Science, 2021, 38(10): 1638-1652. (in Chinese) | |
[41] | 牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展. 分子植物育种, 2016(8): 2050-2059. |
NIU Y L, JIANG X M, XU X Y. Reaserch advances on transcription factor MYB gene family in plant. Molecular Plant Breeding, 2016(8): 2050-2059. (in Chinese) | |
[42] | CHEN W, WANG G, YI M. Whole-Genome identification and salt-and aba-induced expression trends of the Nicotiana tabacum CKX gene family. Research Square, 2021: 1-17. |
[1] | 李慧,尹士采,郭宗香,马好运,任梓齐,折冬梅,梅向东,宁君. 宽胫夜蛾性信息素类似物的合成及其生物活性[J]. 中国农业科学, 2022, 55(9): 1790-1799. |
[2] | 宋松泉,刘军,唐翠芳,程红焱,王伟青,张琪,张文虎,高家东. 种子耐脱水性的生理及分子机制研究进展[J]. 中国农业科学, 2022, 55(6): 1047-1063. |
[3] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[4] | 李扬眉,刘鑫,贾梦晗,仝宇欣. 光期湿度对植物工厂生菜干烧心及其营养品质的影响[J]. 中国农业科学, 2022, 55(20): 4011-4019. |
[5] | 崔青青, 孟宪敏, 段韫丹, 庄团结, 董春娟, 高丽红, 尚庆茂. 断根与打顶对番茄嫁接愈合的抑制作用[J]. 中国农业科学, 2022, 55(2): 365-377. |
[6] | 贾雅婷,胡慧慧,翟亚军,赵冰,何坤,潘玉善,胡功政,苑丽. 核蛋白H-NS调控多重耐药鸡大肠埃希菌IncFⅡ质粒接合转移的分子机制[J]. 中国农业科学, 2022, 55(18): 3675-3684. |
[7] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[8] | 金梦娇,刘博,王抗抗,张广忠,钱万强,万方浩. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应[J]. 中国农业科学, 2022, 55(12): 2347-2359. |
[9] | 杨盛迪,孟祥轩,郭大龙,裴茂松,刘海楠,韦同路,余义和. SO2引起巨峰葡萄采后落粒的共表达网络和转录调控分析[J]. 中国农业科学, 2022, 55(11): 2214-2226. |
[10] | 冯睿蓉,付中民,杜宇,张文德,范小雪,王海朋,万洁琦,周紫彧,康育欣,陈大福,郭睿,史培颖. 中华蜜蜂幼虫肠道中微小RNA的鉴定及分析[J]. 中国农业科学, 2022, 55(1): 208-218. |
[11] | 杜宇,范小雪,蒋海宾,王杰,冯睿蓉,张文德,余岢骏,隆琦,蔡宗兵,熊翠玲,郑燕珍,陈大福,付中民,徐国钧,郭睿. 微小RNA介导意大利蜜蜂工蜂对东方蜜蜂微孢子虫的跨界调控[J]. 中国农业科学, 2021, 54(8): 1805-1820. |
[12] | 王雍,李思妍,何思锐,张迪,连帅,王建发,武瑞. BLV-miRNA跨界调控人类靶基因预测及生物信息学分析[J]. 中国农业科学, 2021, 54(3): 662-674. |
[13] | 王萍,郑晨飞,王娇,胡璋健,邵淑君,师恺. 番茄转录因子SlNAC29在调控植株衰老中的作用及机理[J]. 中国农业科学, 2021, 54(24): 5266-5276. |
[14] | 吕士凯, 马小龙, 张敏, 邓平川, 陈春环, 张宏, 刘新伦, 吉万全. 小麦TaNAC基因基于可变剪切和microRNA的转录后调控分析[J]. 中国农业科学, 2021, 54(22): 4709-4727. |
[15] | 孟祥坤,吴赵露,杨雪梅,官道杰,王建军. 二化螟P糖蛋白基因的克隆分析及对杀虫剂的诱导响应[J]. 中国农业科学, 2021, 54(19): 4121-4131. |
|