中国农业科学 ›› 2022, Vol. 55 ›› Issue (22): 4473-4486.doi: 10.3864/j.issn.0578-1752.2022.22.012
王博1(),覃富强1,邓凤莹1,罗惠格1,陈祥飞1,成果2,白扬3,黄小云3,韩佳宇2,曹雄军2,白先进4()
收稿日期:
2022-02-21
接受日期:
2022-07-08
出版日期:
2022-11-16
发布日期:
2022-12-14
通讯作者:
白先进
作者简介:
王博,Tel:15877190685;E-mail:基金资助:
WANG Bo1(),QIN FuQiang1,DENG FengYing1,LUO HuiGe1,CHEN XiangFei1,CHENG Guo2,BAI Yang3,HUANG XiaoYun3,HAN JiaYu2,CAO XiongJun2,BAI XianJin4()
Received:
2022-02-21
Accepted:
2022-07-08
Online:
2022-11-16
Published:
2022-12-14
Contact:
XianJin BAI
摘要:
【目的】 以3年生一年两收栽培‘阳光玫瑰’葡萄为试材,探究夏果与冬果基本理化指标、类黄酮物质组分及含量的差异,为‘阳光玫瑰’葡萄一年两收栽培的品质调控提供理论依据。【方法】 记录‘阳光玫瑰’葡萄全生育期日照时数、光照度、温度、降雨量等气候数据,在夏果与冬果的幼果期、膨大期、软化期、开始成熟期、成熟期测定果实基本理化指标,并利用高效液相色谱质谱(LC-MS/MS)联用技术检测各时期果皮中黄酮醇和黄烷醇的组分及含量。【结果】 气候因子方面,‘阳光玫瑰’葡萄夏果生长前期光照度弱、温度低,后期光照度强、温度高,而冬果与之相反;夏果生长期平均日照时数、平均温度、有效积温大于冬果,但降雨量低于冬果,开始成熟期至成熟期的夏果水热系数高于冬果。基本品质方面,成熟期夏果可溶性固形物含量显著高于冬果,果皮厚度显著低于冬果,果实单粒重、果实横纵径、可滴定酸含量在夏果与冬果中无显著差异。黄酮醇的组分及含量方面,夏果与冬果的总黄酮醇含量整体呈下降趋势,夏果各时期总黄酮醇含量均显著高于冬果,夏果中黄酮醇主要成分为槲皮素-3-O-葡萄糖苷,冬果中黄酮醇以山奈酚-3-O-半乳糖苷为主。黄烷醇的组分及含量方面,夏果与冬果的总黄烷醇含量也均呈下降趋势,夏果和冬果果皮中均检测到8种相同的黄烷醇物质,主要成分为儿茶素、表儿茶素和原花青素B1。夏果果实发育各时期果皮中总黄烷醇含量以及儿茶素、表儿茶素、原花青素B1含量均显著低于冬果,果实成熟期夏果没食子儿茶素、表没食子儿茶素、表儿茶素没食子酸酯、表没食子儿茶素没食子酸酯、原花青素B2含量显著高于冬果。主成分分析表明夏果与冬果的黄酮醇类物质组分有一定差异。回归分析表明,儿茶素、槲皮素-3-O-葡萄糖苷、原花青素B1是区分夏果与冬果类黄酮物质组分的主要物质。【结论】 试验年份‘阳光玫瑰’葡萄夏果基本品质优于冬果。各时期夏果总黄酮醇类物质含量显著高于同期冬果,而总黄烷醇含量显著低于同期冬果。‘阳光玫瑰’葡萄夏果与冬果果皮中黄酮醇的主要成分不同,但二者黄烷醇的主要成分相同,均为儿茶素、表儿茶素和原花青素B1。冬果中黄烷醇主要成分的含量显著高于夏果,因此其口感的涩味更强。生长期光照和温度差异可能是引起夏、冬果果皮类黄酮物质组分差异的重要因素。
王博,覃富强,邓凤莹,罗惠格,陈祥飞,成果,白扬,黄小云,韩佳宇,曹雄军,白先进. ‘阳光玫瑰’葡萄一年两收果实类黄酮组分及含量差异分析[J]. 中国农业科学, 2022, 55(22): 4473-4486.
WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation[J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
表1
‘阳光玫瑰’葡萄夏果与冬果物候期"
物候期 Phenological period | 夏果Summer grape | 冬果Winter grape | ||
日期(月/日) Date (M/D) | 天数 Number of days (d) | 日期(月/日) Date (M/D) | 天数 Number of days (d) | |
芽顶尖绿色至花帽褪绿期 Ⅰ (E-L4—E-L18) | 3/5-4/6 | 33 | 8/23-9/13 | 22 |
开始开花至花帽完全脱落期 Ⅱ (E-L19—E-L26) | 4/7-4/13 | 7 | 9/14-9/18 | 5 |
幼果直径>2 mm至直径约7 mm期 Ⅲ (E-L27—E-L31) | 4/14-5/10 | 27 | 9/19-10/10 | 22 |
浆果开始封穗至封穗期 Ⅳ (E-L32—E-L33) | 5/11-5/25 | 15 | 10/11-10/30 | 20 |
浆果开始变软至变色期 Ⅴ (E-L34—E-L35) | 5/26-6/27 | 33 | 10/31-12/10 | 41 |
浆果Brix°中等值至未完全成熟期 Ⅵ (E-L36—E-L37) | 6/28-7/12 | 15 | 12/11-1/7 | 28 |
浆果成熟至过熟期 Ⅶ (E-L38—E-L39) | 7/13-7/21 | 9 | 1/8-1/18 | 11 |
全生育期 Total (E-L4—E-L39) | 3/5-7/21 | 139 | 8/23-1/18 | 149 |
表2
黄酮醇、黄烷醇标准品的线性方程及相关系数"
代谢物Metabolite | 回归方程Regression equation | 相关系数Correlation coefficient (R2) |
槲皮素-3-O-葡萄糖苷Quercetin-3-O-glucoside | y=0.0119x+0.3877 | 0.9999 |
儿茶素Catechin | y=0.0006x-2.3247 | 0.9966 |
表儿茶素Epicatechin | y=1.00E-09x2+0.0003x+0.305 | 0.9998 |
没食子儿茶素Gallocatechin | y=0.0001x+0.2875 | 0.9997 |
表没食子儿茶素Epigallocatechin | y=0.0001x+0.2875 | 0.9997 |
表儿茶素没食子酸酯Epicatechin-3-O-gallate | y=1E-10x2+0.0001x+1.4108 | 0.9979 |
表没食子儿茶素没食子酸酯Epigallocatechin gallate | y=1E-11x2+6.00E-05x+1.9494 | 0.9981 |
原花青素B1 Procyanidin B1 | y=0.0004x-1.9582 | 0.9969 |
原花青素B2 Procyanidin B2 | y=0.0005x-1.3177 | 0.9992 |
表3
‘阳光玫瑰’葡萄夏果与冬果不同物候期气象因子"
物候期 Phenological period | 季节 Season | 平均日照时数Average sunshine hours (h) | 平均温度 Average temperature (℃) | 降雨量 Rainfall (mm) | 有效积温 Accumulated temperature (℃) | 水热系数K Hydrothermal coefficient |
Ⅰ (E-L4—E-L18 ) | 夏果 Summer grape | 10.73 | 23.15 | 71.00 | 757.20 | 0.94 |
冬果 Winter grape | 11.58 | 28.34 | 102.20 | 637.03 | 1.60 | |
Ⅱ (E-L19—E-L26) | 夏果 Summer grape | 11.13 | 24.16 | 3.50 | 168.40 | 0.21 |
冬果 Winter grape | 11.22 | 25.94 | 52.20 | 145.57 | 3.59 | |
Ⅲ (E-L27—E-L31) | 夏果 Summer grape | 11.64 | 27.27 | 93.80 | 697.60 | 1.34 |
冬果 Winter grape | 11.21 | 23.55 | 7.00 | 593.91 | 0.12 | |
Ⅳ (E-L32—E-L33) | 夏果 Summer grape | 12.15 | 30.31 | 40.80 | 453.80 | 0.90 |
冬果 Winter grape | 10.14 | 23.32 | 141.20 | 457.97 | 3.08 | |
Ⅴ (E-L34—E-L35) | 夏果 Summer grape | 12.13 | 30.34 | 154.80 | 981.70 | 1.58 |
冬果 Winter grape | 9.51 | 17.13 | 84.60 | 869.57 | 0.97 | |
Ⅵ (E-L36—E-L37) | 夏果 Summer grape | 12.65 | 30.51 | 35.00 | 473.80 | 0.74 |
冬果 Winter grape | 9.02 | 15.46 | 34.60 | 379.06 | 0.91 | |
Ⅶ (E-L38—E-L39) | 夏果 Summer grape | 11.96 | 29.28 | 39.40 | 275.60 | 1.43 |
冬果 Winter grape | 8.65 | 14.22 | 4.60 | 144.87 | 0.32 | |
Total (E-L4—E-L39) | 夏果 Summer grape | 11.70 | 27.67 | 438.30 | 3808.10 | 1.99 |
冬果 Winter grape | 10.05 | 21.07 | 457.20 | 3227.99 | 1.45 |
表4
‘阳光玫瑰’葡萄不同时期夏果与冬果黄酮醇组分及含量变化"
代谢物Metabolite | 季节 Season | E-L31 | E-L33 | E-L35 | E-L36 | E-L38 | |
槲皮素-3-O-半乳糖苷 Quercetin-3-O-galactoside | 夏果Summer grape | — | — | — | — | — | |
冬果Winter grape | 0.37±0.01a* | 0.2±0.01b* | — | — | — | ||
槲皮素-3-O-葡萄糖苷 Quercetin-3-O-glucoside | 夏果Summer grape | 18.23±1.34a* | 6.27±0.30b* | 4.25±0.19c* | 3.27±0.10c* | 3.37±0.07c* | |
冬果Winter grape | — | — | — | — | — | ||
山奈酚-3-O-半乳糖苷 Kaempferol-3-O-galactoside | 夏果Summer grape | 0.25±0.01a | — | — | — | — | |
冬果Winter grape | 2.64±0.16a* | 1.46±0.08b* | 0.69±0.01c* | 0.84±0.08c* | 0.71±0.03c* | ||
总量 Total content | 夏果Summer grape | 18.48±1.34a* | 6.27±0.30b* | 4.25±0.19c* | 3.27±0.10c* | 3.37±0.07c* | |
冬果Winter grape | 3.01±0.18a | 1.66±0.09b | 0.69±0.01c | 0.84±0.08c | 0.71±0.03c |
表5
‘阳光玫瑰’葡萄不同时期夏果与冬果黄烷醇组分及含量的变化"
代谢物 Metabolite | 季节 Season | E-L31 | E-L33 | E-L35 | E-L36 | E-L38 |
儿茶素 Catechin | 夏果 Summer grape | 11.98±0.28a | 11.79±0.28a | 3.61±0.27b | 2.02±0.17c | 1.36±0.10d |
冬果 Winter grape | 29.13±0.83a* | 19.15±0.23b* | 11.99±0.17c* | 5.99±0.80d* | 5.02±0.25e* | |
表儿茶素 Epicatechin | 夏果 Summer grape | 0.38±0.02c | 0.64±0.01b | 0.73±0.02a | 0.77±0.05a | 0.74±0.02a |
冬果 Winter grape | 0.89±0.02b* | 0.80±0.02b* | 1.25±0.06a* | 1.20±0.19a* | 1.12±0.07a* | |
没食子儿茶素 Gallocatechin | 夏果 Summer grape | 0.28±0.01b | 0.49±0.01a* | 0.29±0.01b | 0.22±0.01c | 0.22±0.01c* |
冬果 Winter grape | 0.50±0.03a* | 0.42±0.01b | 0.29±0.01c | 0.24±0.01d | 0.19±0.01e | |
表没食子儿茶素 Epigallocatechin | 夏果 Summer grape | 0.18±0.01c | 0.29±0.01a* | 0.20±0.01b | 0.18±0.01c | 0.18±0.01c* |
冬果 Winter grape | 0.17±0.01b | 0.17±0.01b | 0.19±0.01a | 0.17±0.01b | 0.15±0.01c | |
表儿茶素没食子酸酯 Epicatechin-3-O-gallate | 夏果 Summer grape | 0.84±0.03a | 0.66±0.01b | 0.59±0.01c | 0.60±0.01c | 0.58±0.001c* |
冬果 Winter grape | 1.13±0.04a* | 0.67±0.01b | 0.65±0.01b* | 0.66±0.01b* | 0.57±0.001c | |
表没食子儿茶素没食子酸酯 Epigallocatechin gallate | 夏果 Summer grape | 0.93±0.02a | 0.83±0.01b* | 0.79±0.01d | 0.81±0.01c | 0.79±0.01d* |
冬果 Winter grape | 1.09±0.03a* | 0.77±0.01d | 0.83±0.02c* | 0.87±0.01b* | 0.76±0.01d | |
原花青素B1 Procyanidin B1 | 夏果 Summer grape | 4.75±0.54a | 4.16±0.12a | 3.18±0.23b | 2.64±0.25bc | 2.26±0.17c |
冬果 Winter grape | 12.43±0.71a* | 7.92±0.28b* | 6.57±0.06c* | 3.95±0.30d* | 3.44±0.05d* | |
原花青素B2 Procyanidin B2 | 夏果 Summer grape | 0.19±0.03c | 0.36±0.03a | 0.27±0.02b | 0.28±0.01b* | 0.27±0.03b* |
冬果 Winter grape | 0.28±0.04b* | 0.39±0.03a | 0.19±0.05c | 0.01±0.02d | 0.01±0.002d | |
总量 Total content | 夏果 Summer grape | 19.51±0.73a | 19.23±0.38a | 9.63±0.54b | 7.52±0.48c | 6.40±0.28d |
冬果 Winter grape | 45.6±1.54a* | 30.29±0.35b* | 21.96±0.30c* | 13.09±1.82d | 11.26±0.37e* |
[1] | 刘美迎, 迟明, 张振文. 不同整形方式对‘赤霞珠’葡萄果皮非花色苷酚的影响. 食品科学, 2021, 42(3): 30-37. |
LIU M Y, CHI M, ZHANG Z W. Analysis of non-anthocyanin phenolics in‘cabernet sauvignon’ (Vitis vinifera L.) under different training systems. Food Science, 2021, 42(3): 30-37. (in Chinese) | |
[2] |
BAYAT P, FARSHCHI M, YOUSEFIAN M, MAHMOUDI M, YAZDIAN-ROBATI R. Flavonoids, the compounds with anti- inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. International Immunopharmacology, 2021, 95: 107562. doi: 10.1016/j.intimp.2021.107562.
doi: 10.1016/j.intimp.2021.107562. |
[3] | 赵一凡, 彭文婷, 李惠清, 郭玉婷, 王军. 五个欧亚种酿酒葡萄果实类黄酮及香气物质差异分析. 中外葡萄与葡萄酒, 2021(6): 1-12. |
ZHAO Y F, PENG W T, LI H Q, GUO Y T, WANG J. Difference analysis of flavonoids and aroma compounds of five Vitis vinifera wine grape varieties. Sino-Overseas Grapevine & Wine, 2021(6): 1-12. (in Chinese) | |
[4] | 刘笑宏, 宋一超, 刘兆宇, 杜远鹏, 翟衡. 直立/水平两种叶幕对‘摩尔多瓦’葡萄次生代谢产物含量的影响. 果树学报, 2019, 36(3): 308-317. |
LIU X H, SONG Y C, LIU Z Y, DU Y P, ZHAI H. Effect of vertical and horizontal canopy on the secondary metabolites in ‘Moldova’ grape. Journal of Fruit Science, 2019, 36(3): 308-317. (in Chinese) | |
[5] | 李华. 葡萄栽培学. 北京: 中国农业出版社, 2008. |
LI H. Viticulture. Beijing: Chinese Agriculture Press, 2008. (in Chinese) | |
[6] | 潘照. 鲜食型葡萄品质评价体系及关键数据库建立[D]. 长沙: 中南林业科技大学, 2019. |
PAN Z. Establishment of quality evaluation system and key database of table grape[D]. Changsha: Central South University of Forestry and Technology, 2019. (in Chinese) | |
[7] | 胡粉青, 李翠柏, 党菱婧, 邹澄, 赵庆, 邵曰凤. 槲皮素体外抗肺癌作用研究进展. 食品工业科技, 2022, 43(18): 416-424. |
HU F Q, LI C B, DANG L J, ZOU C, ZHAO Q, SHAO Y F. Research progress of anti-lung cancer effect of quercetin in vitro. Science and Technology of Food Industry, 2022, 43(18): 416-424. (in Chinese) | |
[8] | 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展. 中国农业科学, 2009, 42(8): 2899-2908. |
XIA T, GAO L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. (in Chinese) | |
[9] | 刘鑫铭, 陈婷, 雷龑, 王建超, 蔡盛华. 葡萄一年两收栽培技术研究进展. 中外葡萄与葡萄酒, 2016(5): 131-134. |
LIU X M, CHEN T, LEI Y, WANG J C, CAI S H. Research progress on one-year-double-harvest cultivation technology of grape. Sino-Overseas Grapevine & Wine, 2016(5): 131-134. (in Chinese) | |
[10] | 王博, 白扬, 白先进, 张瑛, 谢太理, 刘金标, 陈爱军, 娄兵海, 何建军, 林玲, 周咏梅, 曹雄军. 阳光玫瑰葡萄在广西南宁的引种表现及其一年两收栽培技术. 南方农业学报, 2016, 47(6): 975-979. |
WANG B, BAI Y, BAI X J, ZHANG Y, XIE T L, LIU J B, CHEN A J, LOU B H, HE J J, LIN L, ZHOU Y M, CAO X J. Introduction performance and double-harvest-a-year cultivation technique of‘Shine Muscat'grape in Nanning, Guangxi. Journal of Southern Agriculture, 2016, 47(6): 975-979. (in Chinese) | |
[11] |
AZUMA A, YAKUSHIJI H, KOSHITA Y, KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 2012, 236(4): 1067-1080. doi: 10.1007/s00425-012-1650-x.
doi: 10.1007/s00425-012-1650-x pmid: 22569920 |
[12] |
KOYAMA K, IKEDA H, POUDEL P R, GOTO-YAMAMOTO N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry, 2012, 78: 54-64. doi: 10.1016/j.phytochem.2012.02.026.
doi: 10.1016/j.phytochem.2012.02.026 pmid: 22455871 |
[13] | SEBELA D, TUROCZY Z, OLEJNICKOVA J, KUMSTA M, SOTOLAR R. Effect of ambient sunlight intensity on the temporal phenolic profiles of Vitis vinifera L. Chardonnay during the ripening season-A field study. South African Journal of Enology and Viticulture, 2017, 38(1): 94-102. |
[14] | 方芳, 王凤忠. 植物黄酮醇生物合成关键基因研究进展. 食品工业科技, 2018, 39(14): 335-340. |
FANG F, WANG F Z. Research progress on key genes of flavonol biosynthesis in plants. Science and Technology of Food Industry, 2018, 39(14): 335-340. (in Chinese) | |
[15] | 成果, 张劲, 黄小云, 张瑛, 谢太理, 谢林君, 余欢, 周咏梅, 周思泓. 广西2个特色酿酒葡萄品种黄烷-3-醇组分解析. 西南农业学报, 2018, 31(9): 1891-1897. |
CHENG G, ZHANG J, HUANG X Y, ZHANG Y, XIE T L, XIE L J, YU H, ZHOU Y M, ZHOU S H. Analysis of flavan-3-ol compositional characteristics of two wine grapes in Guangxi. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1891-1897. (in Chinese) | |
[16] |
FANG F, TANG K, HUANG W D. Changes of flavonol synthase and flavonol contents during grape berry development. European Food Research and Technology, 2013, 237(4): 529-540. doi: 10.1007/s00217-013-2020-z.
doi: 10.1007/s00217-013-2020-z. |
[17] | 白先进, 李杨瑞, 谢太理, 黄江流, 曹慕明, 梁声记. 广西一年两熟葡萄栽培的气候基础. 广西农学报, 2008(1): 1-4. |
BAI X J, LI Y R, XIE T L, HUANG J L, CAO M M, LIANG S J. The climate elements for two-harvest-yearly grape cultivation in Guangxi. Journal of Guangxi Agriculture, 2008(1): 1-4. (in Chinese) | |
[18] | 陆媚. 根域限制对一年两收栽培‘夏黑’葡萄果实发育过程中酚类和香气物质的影响研究[D]. 南宁: 广西大学, 2019. |
LU M. Effects of root restriction on the composition of phenolic and aroma substances in Summer Black grape during berry development under two-crop-a-year cultivation[D]. Nanning: Guangxi University, 2019. (in Chinese) | |
[19] | 陈为凯. 一年两收栽培模式下葡萄果实靶向代谢组和转录组研究[D]. 北京: 中国农业大学, 2018. |
CHEN W K. Study of targeted metabolome and transcriptome in grape berries grown under double cropping viticulture system[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
[20] |
COOMBE B G. Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1995, 1(2): 100-110.
doi: 10.1111/j.1755-0238.1995.tb00085.x |
[21] | 邓凤莹. 一年两收栽培‘阳光玫瑰’葡萄夏、冬果品质组分差异研究[D]. 南宁: 广西大学, 2020. |
DENG F Y. Study on the difference of quality components in summer and winter fruits of ‘Shine Muscat’ in two-crop-a-year cultivation[D]. Nanning: Guangxi University, 2020. (in Chinese) | |
[22] | 白先进, 王举兵, 陈爱军. 广西葡萄产业发展的思考. 广西农学报, 2010, 25(1): 29-32. |
BAI X J, WANG J B, CHEN A J. Considerations on the grape industry development in Guangxi. Journal of Guangxi Agriculture, 2010, 25(1): 29-32. (in Chinese) | |
[23] | CHOU M Y, LI K T. Rootstock and seasonal variations affect anthocyanin accumulation and quality traits of ‘Kyoho’ grape berries in subtropical double cropping system. Vitis, 2014, 53: 193-199. |
[24] | 成果, 张劲, 周思泓, 谢林君, 张瑛, 杨莹, 管敬喜, 谢太理. 一年两收栽培‘赤霞珠’葡萄冬果与夏果花色苷组分差异解析. 果树学报, 2017, 34(9): 1125-1133. |
CHENG G, ZHANG J, ZHOU S H, XIE L J, ZHANG Y, YANG Y, GUAN J X, XIE T L. Difference in anthocyanin composition between winter and summer grape berries of ‘Cabernet Sauvignon’ under two-crop-a-year cultivation. Journal of Fruit Science, 2017, 34(9): 1125-1133. (in Chinese) | |
[25] | 郭泽西, 尹玲, 卢江, 韦荣福, 曲俊杰, 盘丰平, 黄羽. 6个葡萄品种一年两收技术的研究. 中国南方果树, 2018, 47(1): 128-131, 135. |
GUO Z X, YIN L, LU J, WEI R F, QU J J, PAN F P, HUANG Y. Study on the technology of two harvests a year for six grape varieties. South China Fruits, 2018, 47(1): 128-131, 135. (in Chinese) | |
[26] | 陈彦蓓, 罗惠格, 陆媚, 农慧兰, 白扬, 林玲, 白先进, 曹雄军, 陈爱军, 王博. 一年两收栽培夏黑葡萄香气成分分析. 南方农业学报, 2021, 52(5): 1343-1352. |
CHEN Y B, LUO H G, LU M, NONG H L, BAI Y, LIN L, BAI X J, CAO X J, CHEN A J, WANG B. Aroma components analysis of Summer Black grape under two-crops-a-year cultivation. Journal of Southern Agriculture, 2021, 52(5): 1343-1352. (in Chinese) | |
[27] |
NEUGART S, KLARING H P, ZIETZ M, SCHREINER M, ROHN S, KROH L W, KRUMBEIN A. The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea var. sabellica). Food Chemistry, 2012, 133(4): 1456-1465.
doi: 10.1016/j.foodchem.2012.02.034 |
[28] |
LIU L L, GREGAN S, WINEFIELD C, JORDAN B. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon Blanc grape berry. Plant, Cell & Environment, 2015, 38(5): 905-919. doi: 10.1111/pce.12349.
doi: 10.1111/pce.12349. |
[29] |
DOWNEY M O, DOKOOZLIAN N K, KRSTIC M P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. American Journal of Enology and Viticulture, 2006, 57(3): 257-268.
doi: 10.5344/ajev.2006.57.3.257 |
[30] |
方芳, 王凤忠. 葡萄果实黄酮醇生物合成影响因素研究进展. 核农学报, 2016, 30(9): 1798-1804.
doi: 10.11869/j.issn.100-8551.2016.09.1798 |
FANG F, WANG F Z. Research progress on factors affecting the biosynthesis of flavonols in grape fruit. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1798-1804. (in Chinese)
doi: 10.11869/j.issn.100-8551.2016.09.1798 |
|
[31] | 曹运琳, 邢梦云, 徐昌杰, 李鲜. 植物黄酮醇生物合成及其调控研究进展. 园艺学报, 2018, 45(1): 177-192. |
CAO Y L, XING M Y, XU C J, LI X. Biosynthesis of flavonol and its regulation in plants. Acta Horticulturae Sinica, 2018, 45(1): 177-192. (in Chinese) | |
[32] |
FLAMINI R, MATTIVI F, DE ROSSO M, ARAPITSAS P, BAVARESCO L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. International Journal of Molecular Sciences, 2013, 14(10): 19651-19669. doi: 10.3390/ijms141019651.
doi: 10.3390/ijms141019651 pmid: 24084717 |
[33] |
CORTELL J M, KENNEDY J A. Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) pinot noir fruit and extraction in a model system. Journal of Agricultural and Food Chemistry, 2006, 54 (22): 8510-8520.
doi: 10.1021/jf0616560 |
[34] | SPAYD S E, TARARA J M, MEE D L, FERGUSON J C. Seperation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 2002, 53(3): 171182. |
[35] |
DOWNEY M O, HARVRY J S, ROBINSON S P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape and Wine Research, 2004, 10(1): 55-73.
doi: 10.1111/j.1755-0238.2004.tb00008.x |
[36] |
BORDIGA M, TRAVAGLIA F, LOCATELLI M, COISSON J D, ARLORIO M. Characterisation of polymeric skin and seed proanthocyanidins during ripening in six Vitis vinifera L. Food Chemistry, 2011, 127(1): 180-187.
doi: 10.1016/j.foodchem.2010.12.141 |
[37] | 李强. 中国东、 西部产区‘赤霞珠’葡萄类黄酮代谢差异以及叶幕调控对黄烷醇代谢的影响[D]. 北京: 中国农业大学, 2015. |
LI Q. The differences of flavonoids metabolism in Cabernet ‘Sauvignon’ grapes from east and west China and the effect of canopy management on flavan-3-ol metabolism[D]. Beijing: China Agricultural University, 2015. (in Chinese) | |
[38] | 严静, 江雨, 樊秀彩, 姜建福, 张颖, 孙海生, 刘崇怀. 中国11种野生葡萄果皮中黄烷-3-醇类物质的组成及含量. 中国农业科学, 2017, 50(5): 890-905. |
YAN J, JIANG Y, FAN X C, JIANG J F, ZHANG Y, SUN H S, LIU C H. Composition and concentration of flavan-3-ols in berry peel of 11 Chinese wild grape species. Scientia Agricultura Sinica, 2017, 50(5): 890-905. (in Chinese) | |
[39] |
BOGS J, DOWNEY M O, HARVEY J S, ASHTON A R, TANNER G J, ROBINSON S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology, 2005, 139(2): 652-663. doi: 10.1104/pp.105.064238.
doi: 10.1104/pp.105.064238. pmid: 16169968 |
[40] |
POUDEL P R, KOYAMA K, GOTO-YAMAMOTO N. Evaluating the influence of temperature on proanthocyanidin biosynthesis in developing grape berries (Vitis vinifera L.). Molecular Biology Reports, 2020, 47(5): 3501-3510. doi: 10.1007/s11033-020-05440-4.
doi: 10.1007/s11033-020-05440-4. |
[41] |
LIU M Y, SONG C Z, CHI M, WANG T M, ZUO L L, LI X L, ZHANG Z W, XI Z M. The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins of Vitis vinifera berries. Plant Growth Regulation, 2016, 79(3): 377-390. doi: 10.1007/s10725-015-0141-z.
doi: 10.1007/s10725-015-0141-z. |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[3] | 任义方,杨章平,零丰华,肖良文. 江苏奶牛热应激风险区划及其受气候变化的影响[J]. 中国农业科学, 2022, 55(22): 4513-4525. |
[4] | 张泽民,吕昌河. 青藏高原不同积温条件下春小麦光温生产潜力及其对气候变化的响应[J]. 中国农业科学, 2022, 55(11): 2135-2149. |
[5] | 邓艾兴,刘猷红,孟英,陈长青,董文军,李歌星,张俊,张卫建. 田间增温1.5℃对高纬度粳稻产量和品质的影响[J]. 中国农业科学, 2022, 55(1): 51-60. |
[6] | 唐建昭,王靖,肖登攀,潘学标. 马铃薯生长模型的研究进展及发展前景[J]. 中国农业科学, 2021, 54(5): 921-932. |
[7] | 张卫建,严圣吉,张俊,江瑜,邓艾兴. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892-3902. |
[8] | 房蕊,于镇华,李彦生,谢志煌,刘俊杰,王光华,刘晓冰,陈渊,刘居东,张少庆,吴俊江,Stephen J HERBERT,金剑. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3666-3679. |
[9] | 许昕阳,沈佳,张跃建,李国景,牛晓伟,寿伟松. 甜瓜幼果果皮颜色基因GR的精细定位[J]. 中国农业科学, 2021, 54(15): 3308-3319. |
[10] | 杜青,陈平,刘姗姗,罗凯,郑本川,杨欢,何舜,杨文钰,雍太文. 玉米-大豆间套作下田间小气候对大豆花形态建成进程的影响[J]. 中国农业科学, 2021, 54(13): 2746-2758. |
[11] | 林兵,陈艺荃,钟淮钦,叶秀仙,樊荣辉. 荷兰鸢尾‘玉妃’花色变异关键结构基因分析[J]. 中国农业科学, 2021, 54(12): 2644-2652. |
[12] | 王飞,孙增光,尹飞,郭彬彬,刘领,焦念元. 增温增CO2对间作玉米光合特性的影响[J]. 中国农业科学, 2021, 54(1): 58-70. |
[13] | 弓开元,何亮,邬定荣,吕昌河,李俊,周文彬,杜军,于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应[J]. 中国农业科学, 2020, 53(4): 720-733. |
[14] | 许明,林世强,倪冬昕,伊恒杰,刘江洪,杨志坚,郑金贵. 藤茶查尔酮合成酶基因AgCHS1的克隆及功能鉴定[J]. 中国农业科学, 2020, 53(24): 5091-5103. |
[15] | 李永华,武雪萍,何刚,王朝辉. 我国麦田有机肥替代化学氮肥的产量及经济环境效应[J]. 中国农业科学, 2020, 53(23): 4879-4890. |
|