中国农业科学 ›› 2020, Vol. 53 ›› Issue (24): 5039-5049.doi: 10.3864/j.issn.0578-1752.2020.24.007
唐光木1,2(),张云舒2,徐万里2,马海刚2,胡克林1()
收稿日期:
2020-04-02
接受日期:
2020-05-08
出版日期:
2020-12-16
发布日期:
2020-12-28
通讯作者:
胡克林
作者简介:
唐光木,E-mail: 基金资助:
TANG GuangMu1,2(),ZHANG YunShu2,XU WanLi2,MA HaiGang2,HU KeLin1()
Received:
2020-04-02
Accepted:
2020-05-08
Online:
2020-12-16
Published:
2020-12-28
Contact:
KeLin HU
摘要:
【目的】土壤颗粒中有机碳和全氮是土壤有机碳和全氮的重要组成部分,研究长期耕作对农田土壤颗粒组分中有机碳和全氮组分含量和比例变化的影响,有助于揭示不同耕作年限下土壤有机碳和全氮的固存与周转规律,可为区域农田土壤培肥和固碳减排提供科学依据。【方法】以天山南北3个典型绿洲(兰州湾镇、31团、普惠农场)长期耕作农田土壤为研究对象,采用土壤颗粒分级法,研究不同耕作年限(0、5、10、15、20年)下3个典型绿洲农田土壤有机碳和全氮的变化规律,分析长期耕作对不同颗粒组分中有机碳和全氮含量的影响。【结果】(1)长期耕作增加了土壤有机碳和全氮的积累,并随耕作时间的延长而趋于平稳。与未耕作土壤相比,耕作0—5 a间,土壤有机碳、全氮含量增加迅速,兰州湾镇、普惠农场和31团土壤有机碳含量分别提高了76.4%、286.2%和145.6%,土壤全氮含量提高了14.7%、58.9%和75.0%,耕作5 a后,增速趋于平缓。(2)耕作提高了不同颗粒组分中有机碳和全氮含量,砂粒中有机碳含量表现为先增加后下降的趋势,与未耕作土壤相比,兰州湾、31团和普惠农场在耕作10—15 a间达到峰值,随后下降;耕作20 a后土壤砂粒中有机碳含量分别增加了0.63、0.89和1.56 g·kg-1。而粉粒和黏粒中有机碳含量随耕作时间延长表现为持续增加,耕作20 a后,兰州湾、31团和普惠农场粉粒和黏粒中有机碳含量分别增加了0.42-2.39、2.64-3.39、1.36-2.72 g·kg-1。耕作年限对不同颗粒组分中全氮含量的影响比较复杂,砂粒中全氮含量表现为随耕作时间呈现逐渐增加的趋势,耕作20 a后,兰州湾、31团和普惠农场砂粒中全氮含量分别增加了0.24、0.40和0.29 g·kg-1;粉粒中全氮含量随耕作时间呈现先下降(0—10 a),而后(10—20 a)上升的趋势,而黏粒中全氮含量则表现为相反的趋势,耕作0—10 a间快速增加,耕作10 a后开始下降。(3)不同颗粒组分中,粉粒中有机碳和全氮含量占比最大,分别在43.3%—56.1%和30.2%—72.2%之间。耕作改变了不同颗粒组分中有机碳和全氮含量在土壤有机碳和全氮中的分配比例,耕作0—10 a 间,砂粒中有机碳分配比例逐渐增加,10—20 a间呈降低趋势,砂粒中全氮比例分配则随耕作时间表现出递增趋势,耕作20 a间,兰州湾、31团和普惠农场,砂粒中全氮分配比例分别增加了14.8%、19.8%和29.0%。(4)耕作提高了土壤碳氮比,耕作0—5 a间,土壤中碳氮比迅速提高40.3%—142.9%,5 a后,碳氮比变化不明显,同时,改变了不同颗粒组分中碳氮比,耕作0—10 a,砂粒中的碳氮比最高,10 a后,粉粒中碳氮比最高。【结论】耕作增加了新疆绿洲农田土壤有机碳和全氮含量,改变了不同颗粒组分中土壤有机碳和全氮含量和占比,有助于土壤有机碳和全氮的累积,其中粉粒中的有机碳和全氮是该地区土壤固持有机碳和全氮的主体。
唐光木,张云舒,徐万里,马海刚,胡克林. 长期耕作对新疆绿洲农田土壤颗粒中有机碳和全氮含量的影响[J]. 中国农业科学, 2020, 53(24): 5039-5049.
TANG GuangMu,ZHANG YunShu,XU WanLi,MA HaiGang,HU KeLin. Effects of Long-Term Cultivation on Contents of Organic Carbon and Total Nitrogen in Soil Particulate Fraction in Oasis Farmland of Xinjiang[J]. Scientia Agricultura Sinica, 2020, 53(24): 5039-5049.
表1
土壤基本理化性质"
采样点 Sampling site | pH | 容重 Bulk density (g·cm-3) | 碱解氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 电导率 EC (mS·cm-1) | 阳离子交换量 CEC (cmol·kg-1) |
---|---|---|---|---|---|---|---|
兰州湾 Lanzhouwan | 8.18±0.19 | 1.41±0.18 | 53.33±45.97 | 14.07±21.43 | 380.00±144.00 | 1.66±0.69 | 11.31±9.11 |
31团 31 corps | 8.03±0.09 | 1.41±0.19 | 50.25±6.32 | 28.72±8.21 | 135.00±9.40 | 0.58±0.09 | 10.56±1.26 |
普惠农场 Puhui farm | 7.92±0.13 | 1.47±0.13 | 47.35±10.32 | 60.09±28.17 | 128.40±23.84 | 1.21±0.51 | 9.37±1.86 |
表2
不同耕作年限土壤颗粒组分中有机碳和全氮含量"
采样区 Sampling site | 耕作年限 Tillage year (a) | 砂粒 Sand(>50 μm) | 粉粒 Silt(2-50 μm) | 黏粒 Clay(<2 μm) | |||
---|---|---|---|---|---|---|---|
有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | ||
兰州湾 Lanzhouwan | 0 | 0.40±0.12c | 0.07±0.00d | 1.57±0.50c | 0.56±0.05ab | 1.65±0.20d | 0.37±0.01d |
5 | 1.10±0.57b | 0.09±0.00d | 2.95±0.59b | 0.52±0.03b | 2.34±0.13bc | 0.56±0.07ab | |
10 | 1.25±0.74a | 0.16±0.02c | 3.03±0.35b | 0.49±0.04b | 2.48±0.47ab | 0.62±0.05bc | |
15 | 1.02±0.38b | 0.24±0.01b | 3.11±0.86b | 0.61±0.07ab | 2.88±0.22a | 0.48±0.05a | |
20 | 1.03±0.58b | 0.31±0.07a | 3.96±0.49a | 0.69±0.10a | 2.07±0.21c | 0.40±0.04cd | |
31团 31 corps | 0 | 0.32±0.18d | 0.02±0.00d | 1.02±0.70d | 0.53±0.02a | 0.57±0.20c | 0.16±0.01c |
5 | 1.34±0.34b | 0.14±0.01c | 3.39±0.49c | 0.42±0.07a | 2.61±0.69b | 0.59±0.11ab | |
10 | 1.52±0.78a | 0.21±0.03b | 3.72±0.91b | 0.38±0.01a | 2.54±0.37b | 0.65±0.09a | |
15 | 1.31±0.50bc | 0.25±0.01ab | 4.15±0.58a | 0.47±0.06a | 2.77±0.18b | 0.54±0.03b | |
20 | 1.21±0.96c | 0.31±0.05a | 4.41±0.47a | 0.54±0.03a | 3.21±0.32a | 0.49±0.07b | |
普惠农场 Puhui farm | 0 | 0.42±0.44c | 0.04±0.00d | 1.04±0.17d | 0.32±0.00b | 0.77±0.29c | 0.23±0.01d |
5 | 1.51±0.96b | 0.19±0.01c | 2.39±0.51c | 0.41±0.05b | 1.59±0.29b | 0.39±0.04b | |
10 | 1.72±0.11ab | 0.36±0.03b | 2.41±0.50c | 0.43±0.03b | 1.75±0.24ab | 0.44±0.03a | |
15 | 2.05±0.79a | 0.42±0.02ab | 3.41±0.70b | 0.58±0.09a | 2.00±0.23ab | 0.36±0.01c | |
20 | 1.98±0.17a | 0.51±0.06a | 3.76±0.76a | 0.64±0.11a | 2.13±0.47a | 0.25±0.00d |
表3
不同耕作年限土壤及其颗粒组分碳氮比"
采样区 Sampling site | 耕作年限 Tillage year (a) | 土壤碳氮比 C/N | 颗粒组分碳氮比C/N in particle fractions | ||
---|---|---|---|---|---|
砂粒Sand (>50 μm) | 粉粒Silt (2-50 μm) | 黏粒Clay (<2 μm) | |||
兰州湾 Lanzhouwan | 0 | 3.55±0.97b | 6.14±0.12bc | 2.82±0.55b | 4.41±0.21bc |
5 | 5.46±0.70a | 12.22±0.57a | 5.72±0.62a | 4.16±0.20c | |
10 | 5.24±0.78a | 7.81±0.76b | 6.16±0.39a | 4.00±0.52c | |
15 | 5.23±0.86a | 4.32±0.39cd | 5.08±0.93a | 6.00±0.27a | |
20 | 4.77±0.95ab | 3.28±0.65d | 5.71±0.59a | 5.16±0.25ab | |
31团 31 corps | 0 | 2.61±0.36b | 18.16±0.18a | 1.94±0.72c | 3.46±0.21d |
5 | 6.34±0.62a | 9.43±0.35b | 8.16±0.56b | 4.46±0.80c | |
10 | 6.14±0.73a | 7.12±0.81c | 9.71±0.92ab | 3.88±0.46cd | |
15 | 6.10±0.40a | 5.23±0.51cd | 8.77±0.64ab | 5.17±0.21b | |
20 | 6.31±0.38a | 3.89±1.01d | 8.12±0.50b | 6.53±0.35a | |
普惠农场 Puhui farm | 0 | 3.72±0.48c | 10.14±0.44a | 3.28±0.17b | 3.38±0.30d |
5 | 5.22±0.32ab | 8.07±0.97b | 5.85±0.56a | 4.07±0.33c | |
10 | 4.78±0.46b | 4.78±0.14c | 5.60±0.53a | 3.96±0.27c | |
15 | 5.43±0.58ab | 4.88±0.81c | 5.86±0.79a | 5.59±0.24b | |
20 | 5.54±0.73a | 3.88±0.23b | 5.84±0.87a | 8.41±0.47a |
[1] |
戴尔阜, 黄宇, 赵东升. 草地土壤固碳潜力研究进展. 生态学报, 2015,35(12):3908-3918.
doi: 10.5846/stxb201310212541 |
DAI E F, HUANG Y, ZHAO D S. Review on soil carbon sequestration potential in grassland ecosystems. Acta Ecologica Sinica, 2015,35(12):3908-3918. (in Chinese)
doi: 10.5846/stxb201310212541 |
|
[2] | 龚伟, 颜晓元, 蔡祖聪, 王景燕, 胡庭兴, 宫渊波, 冉华. 长期施肥对小麦-玉米作物系统土壤颗粒有机碳和氮的影响. 应用生态学报, 2008,19(11):2375-2381. |
GONG W, YAN X Y, CAI Z C, WANG J Y, HU T X, GONG Y B, RAN H. Effect of long-term fertilization on soil particulate organic and nitrogen in a wheat-maize cropping system. Chinese Journal of Applied Ecology, 2008,19(11):2375-2381. (in Chinese) | |
[3] | 王娜, 朱小叶, 方晰, 辜翔, 陈金磊. 中亚热带退化林地土壤有机碳及不同粒径土壤颗粒有机碳的变化. 水土保持学报, 2018,32(3):218-225. |
WANG N, ZHU X Y, FANG X, GU X, CHEN J L. The variation of soil organic carbon and soil particle-sizes in different degraded forests in the subtropical region. Journal of Soil and Water Conservation, 2018,32(3):218-225. (in Chinese) | |
[4] | 黄雅楠, 黄丽, 薛斌, 成莉娟, 李小坤, 鲁剑巍. 保护性耕作对水-旱轮作土壤有机碳组分的影响—基于密度分组法. 土壤通报, 2019,50(1):109-114. |
HUANG Y N, HUANG L, XUE B, CHENG L J, LI X K, LU J W. Effect of conservation tillage on soil carbon fractions in paddy-upland rotation: Based on density grouping method. Chinese Journal of Soil Science, 2019,50(1):109-114. (in Chinese) | |
[5] |
武天云, SCHOENAU J J, 李凤民, 钱佩源, 王方, MALHI S S. 利用离心法进行土壤颗粒分级. 应用生态学报, 2004,15(3):477-481.
pmid: 15228001 |
WU T Y, SCHOENAU J J, LI F M, QIAN P Y, WANG F, MALHI S S. Soil particle size fractionation with centrifugation method. Chinese Journal of Applied Ecology, 2004,15(3):477-481. (in Chinese)
pmid: 15228001 |
|
[6] | CHRISTENSEN B T. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science New York, 1992,20. |
[7] |
MANDAL N, DWIVEDI B S, MEENA M C, SINGH D, DATTA S P, TOMAR P K, SHARMA B M. Effect of induced defoliation in pigeonpea, farmyard manure and sulphitation pressmud on soil organic carbon fractions, mineral nitrogen and crop yields in a pigeonpea-wheat cropping system. Field Crops Research, 2013,154(6):178-187.
doi: 10.1016/j.fcr.2013.08.007 |
[8] |
FALLOON P D, SMITH P. Modelling refractory soil organic matter. Biology and Fertility of Soils, 2000,30:388-398.
doi: 10.1007/s003740050019 |
[9] |
王建林, 钟志明, 王忠红, 陈宝雄, 余成群, 胡兴祥, 沈振西, 大次卓嘎, 张宪洲. 青藏高原高寒草原生态系统土壤碳氮比的分布特征. 生态学报, 2014,34(22):6678-6691.
doi: 10.5846/stxb201302130263 |
WANG J L, ZHONG Z M, WANG Z H, CHEN B X, YU C Q, HU X X, SHEN Z X, DACIZHUOGA, ZHANG X Z. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau. Acta Ecologica Sinica, 2014,34(22):6678-6691. (in Chinese)
doi: 10.5846/stxb201302130263 |
|
[10] | 谢钧宇, 孟会生, 焦欢, 洪坚平, 张杰, 李丽娜, 黄晓磊, 栗丽, 赵林婷, 李廷亮. 施肥对复垦土壤中活性和难降解碳氮组分的影响. 应用与环境生物学报, 2019,25(5):1113-1121. |
XIE J Y, MENG H S, JIAO H, HONG J P, ZHANG J, LI L N, HUANG X L, LI L, ZHAO L T, LI T L. Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions in reclaimed soils. Chinese Journal of Applied and Environmental Biology, 2019,25(5):1113-1121. (in Chinese) | |
[11] |
胡乃娟, 韩新忠, 杨敏芳, 张政文, 卞新民, 朱利群. 秸秆还田对稻麦轮作农田活性有机碳组分含量、酶活性及产量的短期效应. 植物营养与肥料学报, 2015,21(2):371-377.
doi: 10.11674/zwyf.2015.0211 |
HU N J, HAN X Z, YANG M F, ZHANG Z W, BIAN X M, ZHU L Q. Short-term influence of straw return on the contents of soil organic carbon fractions, enzyme activities and crop yields in rice-wheat rotation farmland. Journal of Plant Nutrition and Fertilizer, 2015,21(2):371-377. (in Chinese)
doi: 10.11674/zwyf.2015.0211 |
|
[12] | LENKA N K, LAL R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil & Tillage Research, 2013,126:78-89. |
[13] |
BURNS R G, DEFOREST J L, MARXSEN J, SINSABAUGH R L, STROMBERGER M E, WALLENSEIN M D, WEINRAUB M N, ZOPPINI A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology & Biochemistry, 2013,58:216-234.
doi: 10.1016/j.soilbio.2012.11.009 |
[14] |
ZUBER S M, VILLAMIL M B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology & Biochemistry, 2016,97:176-187.
doi: 10.1016/j.soilbio.2016.03.011 |
[15] |
李彤, 王梓廷, 刘露, 廖允成, 刘杨, 韩娟. 保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响. 中国农业科学, 2017,50(5):859-870.
doi: 10.3864/j.issn.0578-1752.2017.05.009 |
LI T, WANG Z T, LIU L, LIAO Y C, LIU Y, HAN J. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the Northwest Dryland. Scientia Agricultura Sinica, 2017,50(5):859-870. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.05.009 |
|
[16] |
徐梦, 李晓亮, 蔡晓布, 李晓林, 张旭博, 张俊伶. 藏东南地区不同土地利用方式下土壤有机碳组分及周转变化特征. 中国农业科学, 2018,51(19):3714-3725.
doi: 10.3864/j.issn.0578-1752.2018.19.009 |
XU M, LI X L, CAI X B, LI X L, ZHANG X B, ZHANG J L. Impact of land use type on soil organic carbon fractionation and turnover in southeastern Tibet. Scientia Agricultura Sinica, 2018,51(19):3714-3725. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.19.009 |
|
[17] | 佟小刚, 徐明岗, 张文菊, 卢昌艾. 长期施肥对红壤和潮土颗粒有机碳含量与分布的影响. 中国农业科学, 2008,41(11):3664-3671. |
TONG X G, XU M G, ZHANG W J, LU C A. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China. Scientia Agricultura Sinica, 2008,41(11):3664-3671. (in Chinese) | |
[18] |
WU T Y, SCHOENAU J J, LI F M, QIAN P Y, MALHI S S, SHI Y C. Influence of fertilization and organic amendments on organic-carbon fractions in Heilu soil on the loess plateau of China. Journal of Plant Nutrition and Soil Science, 2005,168:100-107.
doi: 10.1002/(ISSN)1522-2624 |
[19] | 陈洁, 梁国庆, 周卫, 王秀斌, 孙静文, 刘东海, 胡诚. 长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响. 植物营养与肥料学报, 2019,25(1):36-44. |
CHEN J, LIANG G Q, ZHOU W, WANG X B, SUN J W, LIU D H, HU C. Responses of soil organic carbon and nitrogen fraction to long-term organic fertilization under rice-wheat rotation. Journal of Plant Nutrition and Fertilizer, 2019,25(1):36-44. (in Chinese) | |
[20] |
SCHULTEN H R, LEINWEBER P. Influence of long-term fertilization with farmyard manure on soil organic matter: characteristics of particle-size fractions. Biology and Fertility of Soils. 1991,12:81-88.
doi: 10.1007/BF00341480 |
[21] | 中国土壤学会农业化学专业委员会编. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983: 105-107. |
Professional Committee of Chinese Soil Science Society of Agricultural Chemistry. Conventional Methods for Soil and Agricultural Chemistry Analysis. Beijing: Science Press, 1983: 105-107. (in Chinese) | |
[22] | 张电学, 韩志卿, 吴素霞, 范海荣, 谢新宇, 常连生, 王秋兵. 不同施肥制度对褐土有机氮及其组分的影响. 华北农学报, 2017,32(3):201-206. |
ZHANG D X, HAN Z Q, WU S X, FAN H R, XIE X Y, CHANG L S, WANG Q B. Effect of different fertilization regimes on organic nitrogen and its fractions in Cinnamon soil. Acta Agriculturae Boreali-Sinica, 2017,32(3):201-206. (in Chinese) | |
[23] |
任书杰, 曹明奎, 陶波, 李克让. 陆地生态系统氮状态对碳循环的限制作用研究进展. 地理科学进展, 2006,25(4):58-67.
doi: 10.11820/dlkxjz.2006.04.007 |
REN S J, CAO M K, TAO B, LI K R. The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: a review. Progress in Geography, 2006,25(4):58-67. (in Chinese)
doi: 10.11820/dlkxjz.2006.04.007 |
|
[24] | 刘洪来, 张卫华, 王堃. 开垦对农牧交错地带性和非地带性草地土壤性质的影响. 农业工程学报, 2009,25(10):272-277. |
LIU H L, ZHANG W H, WANG K. Effect of reclamation on soil properties of zonal and intrazonal grasslands in agro-pastoral, ecotone. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(10):272-277. (in Chinese) | |
[25] | HOUGHTON R A, HACKLERL J L. Continential scale estimates of the biotic carbon flux from land cover change: 1850-1980. Oak Ridge National Laboratory, USA, 1995,144. |
[26] | 吴乐知, 蔡祖聪. 农业开垦对中国土壤有机碳的影响. 水土保持学报, 2007,21(6):118-134. |
WU L Z, CAI Z C. Effect of agricultural cultivation on soil organic carbon in china. Journal of Soil and Water Conservation, 2007,21(6):118-134. (in Chinese) | |
[27] |
WRIGHT A L, HONS F M. Soil aggregation and carbon and nitrogen storage under soybean cropping sequence. Soil Science Society of America Journal, 2004,68:507-513.
doi: 10.2136/sssaj2004.5070 |
[28] |
MARTÍNEZ J M, GALANTINI J A, DUVAL M E, LÓPEZ F M. Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil and Tillage Research, 2017,169:71-80.
doi: 10.1016/j.still.2017.02.001 |
[29] |
FRANZLUEBBERS A J, HONS F M, ZUBERER D A. Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems. Soil Biology and Biochemistry, 1994,26(11):1469-1475.
doi: 10.1016/0038-0717(94)90086-8 |
[30] | 贺美, 王迎春, 王立刚, 李成全, 王利民, 李玉红, 刘平奇. 深松施肥对黑土活性有机碳氮组分及酶活性的影响. 土壤学报, http://kns.cnki.net/kcms/detail/32.1119.P.20190218.1008.006.html. |
HE M, WANG Y C, WANG L G, LI C Q, WANG L M, LI Y H, LIU P Q. Effects of subsoiling combined with fertilization on the fractions of soil active organic carbon and soil active nitrogen, and enzyme activities in black soil in Northeast china. Acta Pedologica Sinica, http://kns.cnki.net/kcms/detail/32.1119.P.20190218.1008.006.html.(in Chinese) | |
[31] |
于维水, 卢昌艾, 李桂花, 武红亮, 赵雅雯, 王碧胜, 孟繁华. 不同施肥制度下中国东部典型土壤易分解与耐分解氮的组分特征. 中国农业科学, 2015,48(15):3005-3014.
doi: 10.3864/j.issn.0578-1752.2015.15.010 |
YU W S, LU C A, LI G H, WU H L, ZHAO Y W, WANG B S, MENG F H. Compinent characteristics of soil labile and recalcitrant nitrogen under different long-term fertilization Systems in East China. Scientia Agricultura Sinica, 2015,48(15):3005-3014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.15.010 |
|
[32] | 刘军, 唐志敏, 刘建国, 张东升, 刘萍, 蒋桂英. 长期连作及秸秆还田对棉田土壤微生物量及种群结构的影响. 生态环境学报, 2012,21(8):1418-1422. |
LIU J, TANG Z M, LIU J G, ZHANG D S, LIU P, JIANG G Y. Effect of cotton continuous cropping and returning stalks to soil on the quantities and community structure of soil microbes. Ecology and Environmental Sciences, 2012,21(8):1418-1422. (in Chinese) | |
[33] | 徐万里, 唐光木, 盛建东, 梁智, 周勃, 朱敏. 垦殖对新疆绿洲农田土壤有机碳组分及团聚体稳定性的影响. 生态学报, 2010,30(7):1773-1779. |
XU W L, TANG G M, SHENG J D, LIANG Z, ZHOU B, ZHU M. Effects of cultivation on organic carbon fractionation and aggregate stability in Xinjiang oasis soils. Acta Ecologica Sinica, 2010,30(7):1773-1779. (in Chinese) | |
[34] | 唐光木, 徐万里, 周勃, 梁智, 葛春辉. 耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响. 水土保持学报, 2013,27(3):237-241. |
TANG G M, XU W L, ZHOU B, LIANG Z, GE C H. Effects of cultivation Years on particulate organic carbon and mineral-associated organic carbon in cotton soil. Journal of Soil and Water Conservation, 2013,27(3):237-241. (in Chinese) | |
[35] | GOLCHIN A, OADES J M, SKJEMSTD J O. Soil structure and carbon cycling. Australian Journal of Soil Research, 1994,32:1043-1068 |
[36] | 雷军, 张凤华, 林海荣, 韩春丽, 赵瑞海. 干旱区盐渍化荒地不同开垦年限土壤碳氮储量研究. 干旱地区农业研究, 2017,35(3):266-271. |
LEI J, ZHANG F H, LIN H R, HAN C L, ZHAO R H. Soil carbon and nitrogen storage of different reclamation years in salinized wasteland in arid region. Agricultural Research in the Arid Areas, 2017,35(3):266-271. (in Chinese) | |
[37] | 黄彩变, 曾凡江, 雷加强, 刘镇, 安桂香. 开垦对绿洲农田碳氮累积及其与作物产量关系的影响. 生态学报, 2011,31(18):5113-5120. |
HUANG C B, ZENG F J, LEI J Q, LIU Z, AN G X. Effect of cultivation on soil organic carbon and total nitrogen accumulation in Cele oasis croplands and their relation to crop yield. Acta Ecologica Sinica, 2011,31(18):5113-5120. (in Chinese) |
[1] | 吴俊,郭大千,李果,郭熙,钟亮,朱青,国佳欣,叶英聪. 基于CARS-BPNN的江西省土壤有机碳含量高光谱预测[J]. 中国农业科学, 2022, 55(19): 3738-3750. |
[2] | 王楚涵,刘菲,高健永,张慧芳,谢英荷,曹寒冰,谢钧宇. 减氮覆膜下土壤有机碳组分含量的变化特征[J]. 中国农业科学, 2022, 55(19): 3779-3790. |
[3] | 汤明尧,沈重阳,陈署晃,唐光木,李青军,闫翠侠,耿庆龙,傅国海. 新疆小麦、玉米的产量和氮磷钾肥利用效率[J]. 中国农业科学, 2022, 55(14): 2762-2774. |
[4] | 崔帅,刘烁然,王寅,夏晨真,焉莉,冯国忠,高强. 吉林省旱地土壤有效硫含量及其与土壤有机质和全氮的关系[J]. 中国农业科学, 2022, 55(12): 2372-2383. |
[5] | 王碧胜,于维水,武雪萍,高丽丽,李景,宋霄君,李生平,卢晋晶,郑凤君,蔡典雄. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响[J]. 中国农业科学, 2021, 54(6): 1176-1187. |
[6] | 娄善伟,董合忠,田晓莉,田立文. 新疆棉花“矮、密、早”栽培历史、现状和展望[J]. 中国农业科学, 2021, 54(4): 720-732. |
[7] | 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学, 2021, 54(3): 596-607. |
[8] | 黄明,吴金芝,李友军,付国占,赵凯男,张振旺,杨中帅,侯园泉. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响[J]. 中国农业科学, 2021, 54(24): 5206-5219. |
[9] | 张梦亭, 刘萍, 黄丹丹, 贾淑霞, 张晓珂, 张士秀, 梁文举, 陈学文, 张延, 梁爱珍. 东北黑土线虫群落对长期免耕后土壤扰动的响应[J]. 中国农业科学, 2021, 54(22): 4840-4850. |
[10] | 曹寒冰,谢钧宇,刘菲,高健永,王楚涵,王仁杰,谢英荷,李廷亮. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性[J]. 中国农业科学, 2021, 54(21): 4611-4622. |
[11] | 杨封科,何宝林,董博,王立明. 不同降雨年型黑膜垄作对土壤水肥环境及马铃薯产量和效益的影响[J]. 中国农业科学, 2021, 54(20): 4312-4325. |
[12] | 王瑾瑜,程文龙,槐圣昌,武红亮,邢婷婷,于伟家,武际,李敏,卢昌艾. 深翻、有机无机肥配施对稻田水分渗漏和氮素淋溶的影响[J]. 中国农业科学, 2021, 54(20): 4385-4395. |
[13] | 李景,吴会军,武雪萍,王碧胜,姚宇卿,吕军杰. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 2021, 54(2): 334-344. |
[14] | 郭星宇,王浩,于琦,王瑞,王小利,李军. 耕作对渭北旱塬小麦-玉米轮作田土壤水分和产量的影响[J]. 中国农业科学, 2021, 54(14): 2977-2990. |
[15] | 李娜,孙占祥,张燕卿,刘恩科,李凤鸣,李纯乾,李菲. 碳氮同位素结合稳定同位素模型解析沉积土壤碳源[J]. 中国农业科学, 2021, 54(14): 3057-3064. |
|