中国农业科学 ›› 2020, Vol. 53 ›› Issue (19): 3857-3866.doi: 10.3864/j.issn.0578-1752.2020.19.001
相吉山1(),刘鹏鹏2(
),桑伟2,崔凤娟2,韩新年2,聂迎彬2,孔德真2,邹波2,徐红军2,穆培源2(
)
收稿日期:
2019-11-20
接受日期:
2020-03-10
出版日期:
2020-10-01
发布日期:
2020-10-19
通讯作者:
穆培源
作者简介:
相吉山,E-mail: 基金资助:
XIANG JiShan1(),LIU PengPeng2(
),SANG Wei2,CUI FengJuan2,HAN XinNian2,NIE YingBin2,KONG DeZhen2,ZOU Bo2,XU HongJun2,MU PeiYuan2(
)
Received:
2019-11-20
Accepted:
2020-03-10
Online:
2020-10-01
Published:
2020-10-19
Contact:
PeiYuan MU
摘要:
【目的】检测新疆春小麦品种Pins等位变异分布规律,分析不同Pins基因型春小麦品种籽粒硬度的差异,探讨Pins对春小麦品种主要品质性状和新疆拉面加工品质的影响,明确籽粒硬度影响新疆拉面加工品质的分子遗传基础及机理。【方法】以386份新疆春小麦品种资源为材料,用分子标记检测籽粒硬度Pins,测定品质性状(籽粒性状、磨粉品质、面粉品质、面团特性、淀粉糊化特性等),制作新疆拉面并进行评鉴。【结果】Pins等位变异分布规律:在新疆春小麦品种资源中,Pina有2种等位变异,分别为Pina-D1a(占比86.79%)、Pina-D1b(13.21%);Pinb有3种等位变异,分别为Pinb-D1a(64.77%)、Pinb-D1b(32.12%)和Pinb-D1p(3.11%);Pina/Pinb有6种基因型组合,分别为Pina-D1a/Pinb-D1a(58.81%)、Pina-D1a/Pinb-D1b(25.39%)、Pina-D1a/Pinb-D1p(2.59%)、Pina-D1b/Pinb-D1a(5.96%)、Pina-D1b/Pinb-D1b(6.74%)和Pina-D1b/Pinb-D1p(0.52%)。Pins对春小麦品种品质性状的影响:Pina-D1a的籽粒蛋白含量、灰分含量、白度、湿面筋含量、Zeleny沉淀值均显著高于Pina-D1b;籽粒硬度、黄度(b*值)、面筋指数、峰值时间、8分钟面积、稀懈值均显著低于Pina-D1b。与其他等位变异相比,Pinb-D1a的白度、湿面筋含量,Pinb-D1b的出粉率、黄度(b*值),Pinb-D1p的籽粒硬度、面筋指数均最高且达显著差异水平。与其他基因型组合相比,Pina-D1a/Pinb-D1a的白度,Pina-D1a/Pinb-D1p的籽粒硬度、面筋指数、8分钟面积,Pina-D1b/Pinb-D1b 的淀粉稀懈值,Pina-D1b/Pinb-D1p的籽粒蛋白含量、出粉率、面粉的湿面筋含量均最高且达显著差异水平。Pins对新疆拉面加工品质的影响:Pina-D1a的拉面手感、粘弹性、总分极显著低于Pina-D1b;Pina-D1b/Pinb-D1p的拉面手感最好,Pina-D1a/Pinb-D1p、Pina-D1b/Pinb-D1a和Pina-D1b/Pinb-D1b的粘弹性最高;Pina-D1b/Pinb-D1a、Pina-D1b/Pinb-D1b的总分最高。【结论】Pina突变会使新疆春小麦胚乳质地变硬、主要品质性状显著升高,促进新疆拉面的拉面手感和粘弹性等性状得到显著改善,最终促使新疆拉面的加工品质(总分)显著提升;Pinb变异对新疆拉面加工品质的影响不显著。Pina-D1b/Pinb-D1a、Pina-D1b/Pinb-D1b是优质新疆拉面小麦品种品质改良中重点选择的基因型组合类型。
相吉山,刘鹏鹏,桑伟,崔凤娟,韩新年,聂迎彬,孔德真,邹波,徐红军,穆培源. 新疆春小麦品种Pins基因等位变异及其对新疆拉面加工品质的影响[J]. 中国农业科学, 2020, 53(19): 3857-3866.
XIANG JiShan,LIU PengPeng,SANG Wei,CUI FengJuan,HAN XinNian,NIE YingBin,KONG DeZhen,ZOU Bo,XU HongJun,MU PeiYuan. Allelic Variations of Pins Genes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang Hand-Stretched Noodles[J]. Scientia Agricultura Sinica, 2020, 53(19): 3857-3866.
表3
Pins对新疆春小麦品种籽粒性状和磨粉品质的影响"
基因型组合 Genotype combination | 籽粒性状Grain character | 磨粉品质Milling quality | |||||||
---|---|---|---|---|---|---|---|---|---|
硬度 Hardness | 蛋白含量 Protein content (%) | 出粉率 Flour yield (%) | 灰分含量 Ash content (%) | L*值 L* value | a*值 a* value | b*值 b* value | 白度 Whiteness | ||
Pina | Pina-D1a | 52.54±17.30 | 15.39±1.83** | 49.32±8.41 | 0.52±0.07** | 97.89±5.10 | -0.02±1.25 | 9.67±1.55 | 73.90±4.67* |
Pina-D1b | 56.59±14.36** | 15.00±1.57 | 49.86±6.85 | 0.51±0.05 | 97.28±4.99 | -0.09±1.24 | 9.89±1.44* | 73.40±2.76 | |
Pinb | Pinb-D1a | 52.68±17.50 | 15.37±1.86 | 48.90±8.16abAB | 0.51±0.06 | 97.88±5.18 | -0.03±1.24 | 9.63±1.61b | 74.13±3.86aA |
Pinb-D1b | 53.57±16.02b | 15.25±1.68 | 50.47±8.23aA | 0.51±0.08 | 97.71±4.88 | -0.02±1.26 | 9.82±1.40a | 73.30±5.49abAB | |
Pinb-D1p | 57.38±13.64a | 15.38±1.80 | 48.65±7.79bB | 0.52±0.05 | 97.17±5.17 | -0.09±1.16 | 9.81±1.23a | 73.06±2.30bB | |
Pina/ Pinb | Pina-D1a/Pinb-D1a | 52.16±17.77cC | 15.42±1.88bB | 48.80±8.34b | 0.52±0.06 | 97.99±5.17 | -0.03±1.24 | 9.61±1.64 | 74.20±3.96a |
Pina-D1a/Pinb-D1b | 52.77±16.39cC | 15.34±1.72bB | 50.66±8.47a | 0.52±0.08 | 97.73±4.94 | 0.00±1.26 | 9.77±1.36 | 73.25±6.08ab | |
Pina-D1a/Pinb-D1p | 58.14±13.50aA | 15.19±1.74bB | 48.15±8.04b | 0.51±0.05 | 97.25±5.12 | -0.11±1.17 | 9.82±1.17 | 73.24±2.36ab | |
Pina-D1b/Pinb-D1a | 57.29±14.21abAB | 14.94±1.61bB | 49.78±6.27ab | 0.50±0.04 | 96.90±5.25 | -0.08±1.22 | 9.79±1.37 | 73.46±2.80ab | |
Pina-D1b/Pinb-D1b | 56.22±14.45bB | 14.94±1.48bB | 49.83±7.41ab | 0.51±0.05 | 97.66±4.70 | -0.11±1.27 | 9.98±1.49 | 73.44±2.76ab | |
Pina-D1b/Pinb-D1p | 53.26±14.29cC | 16.46±1.82aA | 51.35±5.90a | 0.54±0.05 | 96.75±5.68 | -0.01±1.15 | 9.73±1.56 | 72.13±1.79b |
表4
Pins对新疆春小麦品种面粉品质和面团特性的影响"
基因型组合 Genotype combination | 湿面筋含量 Gluten content (%) | 面筋指数 Gluten index (%) | Zeleny沉淀值 Zeleny sedimentation (mL) | 峰值时间 Midline peak time (min) | 峰值高度 Midline peak value (%) | 8分钟宽度 8 min width (%) | 8分钟面积 8 min integral (%TQ*min) | |
---|---|---|---|---|---|---|---|---|
Pina | Pina-D1a | 3.43±0.64** | 70.14±19.84 | 32.27±7.55* | 2.99±2.41 | 54.85±3.25 | 29.45±10.22 | 127.03±50.41 |
Pina-D1b | 3.33±0.56 | 74.64±16.63** | 31.22±6.97 | 3.17±1.19* | 54.77±2.56 | 30.20±10.21 | 135.59±52.85** | |
Pinb | Pinb-D1a | 3.45±0.64aA | 69.41±19.92bB | 31.98±7.24 | 2.97±2.71 | 54.90±3.05 | 29.50±10.15 | 125.60±50.70bB |
Pinb-D1b | 3.36±0.60bB | 73.04±18.59abAB | 32.30±7.84 | 3.06±1.12 | 54.73±3.40 | 29.67±10.31 | 131.88±50.10bAB | |
Pinb-D1p | 3.40±0.60abAB | 75.55±16.14aA | 32.87±8.26 | 3.38±1.26 | 54.66±2.63 | 29.49±10.68 | 144.84±55.71aA | |
Pina/ Pinb | Pina-D1a/Pinb-D1a | 3.46±0.65abAB | 68.66±20.13bB | 32.06±7.30 | 2.95±2.82 | 54.90±3.11 | 29.41±10.16 | 124.23±49.65bB |
Pina-D1a/Pinb-D1b | 3.38±0.62bB | 72.86±19.04abAB | 32.65±7.95 | 3.04±1.14 | 54.75±3.60 | 29.44±10.33 | 131.40±50.40abAB | |
Pina-D1a/Pinb-D1p | 3.34±0.60bB | 76.23±17.12aA | 33.24±8.72 | 3.41±1.34 | 54.60±2.68 | 30.28±10.57 | 145.81±58.82aA | |
Pina-D1b/Pinb-D1a | 3.32±0.61bB | 76.03±16.56aA | 31.32±6.65 | 3.23±1.37 | 54.85±2.47 | 30.34±10.12 | 137.70±57.98abAB | |
Pina-D1b/Pinb-D1b | 3.30±0.51bB | 73.63±17.09abAB | 31.15±7.38 | 3.11±1.05 | 54.68±2.66 | 30.43±10.23 | 133.46±49.24abAB | |
Pina-D1b/Pinb-D1p | 3.74±0.50aA | 71.85±8.67abAB | 30.89±4.91 | 3.20±0.80 | 54.98±2.43 | 25.16±10.66 | 139.59±35.75abAB |
表5
Pins对新疆春小麦品种淀粉糊化特性的影响"
基因型组合 Genotype combination | 峰值黏度 Peak viscosity (cp) | 低谷黏度 Trough viscosity (cp) | 稀懈值 Breakdown (cp) | 最终黏度 Final viscosity (cp) | 反弹值 Setback (cp) | |
---|---|---|---|---|---|---|
Pina | Pina-D1a | 3503.24±545.86 | 2272.50±304.02 | 1230.74±392.65 | 3862.32±457.70 | 1589.82±210.34 |
Pina-D1b | 3555.49±461.50 | 2260.21±245.00 | 1295.28±358.76** | 3837.73±349.40 | 1577.52±171.57 | |
Pinb | Pinb-D1a | 3501.94±556.29 | 2267.75±309.03 | 1234.19±394.10 | 3853.71±462.32 | 1585.95±208.48 |
Pinb-D1b | 3529.24±503.23 | 2268.36±276.34 | 1260.87±380.10 | 3857.72±414.66 | 1589.35±198.63 | |
Pinb-D1p | 3504.54±377.63 | 2349.23±202.99 | 1155.31±342.06 | 3964.23±315.85 | 1615.00±200.88 | |
Pina/Pinb | Pina-D1a/Pinb-D1a | 3493.70±562.46 | 2265.96±312.40 | 1227.75±396.64a | 3853.15±469.21 | 1587.20±211.06 |
Pina-D1a/Pinb-D1b | 3521.04±524.56 | 2276.45±294.44 | 1244.59±386.95a | 3867.35±444.77 | 1590.90±209.24 | |
Pina-D1a/Pinb-D1p | 3541.43±348.69 | 2368.97±169.17 | 1172.47±355.24ab | 4001.82±276.43 | 1632.85±202.06 | |
Pina-D1b/Pinb-D1a | 3574.79±494.23 | 2283.62±277.98 | 1291.17±367.34a | 3858.59±397.71 | 1574.97±184.51 | |
Pina-D1b/Pinb-D1b | 3556.25±425.80 | 2241.72±204.25 | 1314.54±352.46a | 3825.95±293.29 | 1584.23±159.17 | |
Pina-D1b/Pinb-D1p | 3283.20±472.95 | 2230.80±321.26 | 1052.40±249.32b | 3738.70±433.76 | 1507.90±167.94 |
表6
Pins对春小麦品种新疆拉面加工品质的影响"
基因型组合 Genotype combination | 拉面手感 Stretch feeling | 表面状况 Surface | 适口性 Firmness | 粘弹性 Viscoelasticity | 光滑性 Smoothness | 食味 Taste and flavor | 色泽 Color | 总分 Total score | |
---|---|---|---|---|---|---|---|---|---|
Pina | Pina-D1a | 10.87±2.07 | 7.06±0.79 | 13.90±2.02 | 22.88±3.35 | 7.58±0.66 | 4.06±0.27 | 11.12±1.47 | 77.46±6.21 |
Pina-D1b | 11.40±1.73** | 7.13±0.80 | 13.99±1.90 | 23.42±3.06** | 7.65±0.68 | 4.06±0.28 | 11.25±1.47 | 78.86±5.91** | |
Pinb | Pinb-D1a | 10.90±2.02 | 7.06±0.79 | 13.93±2.02 | 22.86±3.31 | 7.59±0.65 | 4.06±0.27 | 11.13±1.48 | 77.53±6.12 |
Pinb-D1b | 11.03±2.00 | 7.08±0.79 | 13.84±1.96 | 23.11±3.28 | 7.56±0.68 | 4.06±0.27 | 11.19±1.45 | 77.86±6.32 | |
Pinb-D1p | 11.06±2.21 | 7.11±0.69 | 14.19±1.78 | 23.35±3.30 | 7.76±0.68 | 4.06±0.26 | 10.93±1.23 | 78.45±5.18 | |
Pina/ Pinb | Pina-D1a/Pinb-D1a | 10.84±2.04bB | 7.06±0.79 | 13.94±2.02 | 22.80±3.34b | 7.58±0.66 | 4.05±0.27 | 11.12±1.49 | 77.38±6.16bB |
Pina-D1a/Pinb-D1b | 10.94±2.05bB | 7.06±0.77 | 13.78±1.99 | 23.01±3.31ab | 7.54±0.66 | 4.07±0.27 | 11.15±1.42 | 77.54±6.31bB | |
Pina-D1a/Pinb-D1p | 10.87±2.35bB | 7.13±0.71 | 14.25±1.80 | 23.46±3.39a | 7.75±0.69 | 4.07±0.27 | 11.02±1.14 | 78.54±5.31abAB | |
Pina-D1b/Pinb-D1a | 11.44±1.72abAB | 7.10±0.76 | 13.91±1.99 | 23.46±2.95a | 7.66±0.62 | 4.09±0.28 | 11.20±1.38 | 78.87±5.61aA | |
Pina-D1b/Pinb-D1b | 11.32±1.79abAB | 7.17±0.85 | 14.06±1.83 | 23.44±3.19a | 7.63±0.74 | 4.03±0.28 | 11.34±1.52 | 78.91±6.26aA | |
Pina-D1b/Pinb-D1p | 12.09±0.54aA | 7.05±0.57 | 13.86±1.72 | 22.73±2.84b | 7.80±0.67 | 3.98±0.22 | 10.45±1.61 | 77.96±4.59bB |
[1] | POMERANZ Y, WILLAMS P C. Wheat hardness: Its genetic, structure and biochemical background, measurement, and significance. In ‘Advances in cereal science and technology’. American Association of Cereal Chemists: St Paul Minnesota, 1990: 471-548. |
[2] |
MA D Y, ZHANG Y, XIA X C, MORRIS C F, HE Z H. Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. Journal of Cereal Science, 2009, 50: 126-130.
doi: 10.1016/j.jcs.2009.03.006 |
[3] | ERKINBAEV C, DERKSEN K, PALIWAL J. Single kernel wheat hardness estimation using near infrared hyperspectral imaging. Infrared Physics & Technology, 2019(98): 250-255. |
[4] |
胡瑞波, 田纪春. 小麦主要品质性状与面粉色泽的关系. 麦类作物学报, 2006, 26(3): 96-101.
doi: 10.7606/j.issn.1009-1041.2006.03.114 |
HU R B, TIAN J C. Relationship between main quality characteristics and wheat flour color. Journal of Triticeae Crops, 2006, 26(3): 96-101. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2006.03.114 |
|
[5] | 周艳华, 何中虎, 阎俊, 张艳, 王德森, 周桂英. 中国小麦硬度分布及遗传分析. 中国农业科学, 2002, 35(10): 1177-1185. |
ZHOU Y H, HE Z H, YAN J, ZHANG Y, WANG D S, ZHOU G Y. Distribution of grain hardness in Chinese wheat and genetic analysis. Scientia Agricultura Sinica, 2002, 35(10): 1177-1185. (in Chinese) | |
[6] |
LILLEMO M, SIMEONE M C, MORRIS C F. Analysis of puroindoline a and b sequences from Triticum aestivum cv. ‘Penawawa’ and related taxa. Euphytica, 2002, 126: 321-331.
doi: 10.1023/A:1019908325078 |
[7] |
GIROUX M J, MORRIS C F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical and Applied Genetics, 1997, 95: 857-864.
doi: 10.1007/s001220050636 |
[8] |
MORRIS C F, BHAVE M. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. Journal of Cereal Science, 2008, 48: 277-287.
doi: 10.1016/j.jcs.2007.09.012 |
[9] |
MASSA A N, MORRIS C F, GILL B S. Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes in Aegilops tauschii cross. Crop Science, 2004, 44: 1808-1816.
doi: 10.2135/cropsci2004.1808 |
[10] |
GEDYE K R, MORRIS C F, BETTGE A D. Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theoretical and Applied Genetics, 2004, 109: 1597-1603.
doi: 10.1007/s00122-004-1788-4 pmid: 15448897 |
[11] |
IKEDA T M, OHNISHI N, NAGAMINE T, ODA S, HISATOMI T, YANO H. Identification of new puroindoline genotypes and their protein products among wheat cultivars. Journal of Cereal Science, 2004, 41: 1-6.
doi: 10.1016/j.jcs.2004.10.002 |
[12] |
GAZZA L, NOCENTE F, NG P K W, POGNA N E. Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a. Theoretical and Applied Genetics, 2005, 110: 470-478.
doi: 10.1007/s00122-004-1854-y pmid: 15657742 |
[13] |
CHEN F, HE Z H, XIA X C, XIA L Q, ZHANG X Y, LILLEMO M, MORRIS C F. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theoretical and Applied Genetics, 2006, 112: 400-409.
doi: 10.1007/s00122-005-0095-z pmid: 16344983 |
[14] |
CHANG C, ZHANG H P, XU J, LI W H, LIU G T, YOU M S, LI B Y. Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Euphytica, 2006, 152: 225-234.
doi: 10.1007/s10681-006-9204-6 |
[15] |
CHEN F, ZHANG F Y, XIA X C, DONG Z D, CUI D Q. Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Molecular Breeding. 2012, 29: 371-378.
doi: 10.1007/s11032-011-9553-2 |
[16] | CHEN F, LI H, CUI D Q. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries(Triticum aestivum L.). BMC Plant Biology, 2013, 125: 1-13. |
[17] |
RAMALINGAM A, PALOMBO E A, BHAVE M. The Pinb-2 genes in wheat comprise a multigene family with great sequence diversity and important variants. Journal of Cereal Science, 2012, 56: 171-180.
doi: 10.1016/j.jcs.2012.02.006 |
[18] |
KUMAR R, ARORA S, SINGH K, GARG M. Puroindoline allelic diversity in Indian wheat germplasm and identification of new allelic variants. Breeding Science, 2015, 65(4): 319-326.
doi: 10.1270/jsbbs.65.319 pmid: 26366114 |
[19] |
LILLEMO M, MORRIS C F. Aleucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theoretical and Applied Genetics, 2000, 100: 1100-1107.
doi: 10.1007/s001220051392 |
[20] |
MORRIS C F, LILLEMO M, SIMEONE M C, GIROUX M J, BABB S L, KIMBERLEE K K. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Science, 2001, 41: 218-228.
doi: 10.2135/cropsci2001.411218x |
[21] |
SIMEONE M, GEDYE K R, MASON-GAMER R, GILL B S, MORRIS C F. Conserved regulator elements identified from a comparative puroindoline gene sequence survey of Triticum and Aegilops diploid taxa. Journal of Cereal Science, 2006, 44: 21-33.
doi: 10.1016/j.jcs.2006.02.002 |
[22] |
XIA L Q, CHEN F, HE Z H, CHEN X M, MORRIS C F. Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chemistry, 2005, 82: 38-43.
doi: 10.1094/CC-82-0038 |
[23] |
CHEN F, HE Z H, XIA X C, LILLEMO M, MORRIS C F. A new puroindoline b mutation presented in Chinese winter wheat cultivar Jingdong 11. Journal of Cereal Science, 2005, 42: 267-269.
doi: 10.1016/j.jcs.2005.03.004 |
[24] |
RAM S, JAIN N, SHORAN J, SINGH R. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and Ni5439. Journal of Plant Biochemistry and Biotechnology, 2005, 14: 45-48.
doi: 10.1007/BF03263224 |
[25] |
CHEN F, YU Y X, XIA X C, HE Z H. Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (Triticum aestivum ssp. yunnanense King). Euphytica, 2007, 156: 39-46.
doi: 10.1007/s10681-006-9347-5 |
[26] |
WANG J, SUN J J, LIU D C, YANG W L, WANG D W, TONG Y P, ZHANG A M. Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by ecotilling and identification of a novel Pinb allele. Journal of Cereal Science, 2008, 48: 836-842.
doi: 10.1016/j.jcs.2008.06.005 |
[27] |
LI G, HE Z, LILLEMO M, SUN Q, XIA X. Molecular characterization of allelic variations at Pina and Pinb loci in Shandong wheat landraces, historical and current cultivars. Journal of Cereal Science, 2008, 47: 510-517.
doi: 10.1016/j.jcs.2007.06.003 |
[28] |
TANAKA H, MORRIS C F, HARUNA M, TSUJIMOTO H. Prevalence of puroindoline alleles in wheat from eastern Asia including the discovery of a new SNP in puroindoline b. Plant Genetic Resource, 2008, 6: 142-152.
doi: 10.1017/S1479262108993151 |
[29] |
WANG L, LI G Y, XIA X C, HE Z H, MU P Y. Molecular characterization of Pina and Pinb allelic variations in Xinjiang landraces and commercial wheat cultivars. Euphytica, 2008, 164: 745-752.
doi: 10.1007/s10681-008-9706-5 |
[30] |
MARTIN J M, SHERMAN J D, LANNING S P, TALBERT L E, GIROUX M J. Effect of variation in amylase content and puroindoline composition on bread quality in a hard spring wheat population. Cereal Chemistry, 2008, 85: 266-269.
doi: 10.1094/CCHEM-85-2-0266 |
[31] | 周显青, 张玉荣. 拉面的实验室制作及评价方法的研究. 中国粮油学报, 2000, 15(4): 53-56. |
ZHOU X Q, ZHANG Y R. Laboratory procedure and evaluation of hand-extended noodles. Journal of the Chinese Cereals and Oils Association, 2000, 15(4): 53-56. (in Chinese) | |
[32] | 芦静, 张新忠, 吴新元, 黄天荣. 小麦品质性状与面制食品加工特性相关性研究. 新疆农业科学, 2002, 39(5): 290-292. |
LU J, ZHANG X Z, WU X Y, HUANG T R. Investigation on correlation between quality characters of wheat and processing quality of flour food. Xinjiang Agricultural Sciences, 2002, 39(5): 290-292. (in Chinese) | |
[33] | 哈力旦·依克热木, 芦静, 周安定, 曾潮武, 曹俊梅, 梁晓东, 刘联正, 范贵强, 张新忠, 黄天荣, 高永红, 吴新元. 新疆部分小麦材料籽粒硬度基因等位变异的分子鉴定及其分布. 新疆农业科学, 2016, 53(6): 981-986. |
HALIDAN Y, LU J, ZHOU A D, ZENG C W, CAO J M, LIANG X D, LIU L Z, FAN G Q, ZHANG X Z, HUANG T R, GAO Y H, WU X Y. Distribution and molecular identification of kernel hardness gene alleles in part of wheat germplasms of Xinjiang. Xinjiang Agricultural Sciences, 2016, 53(6): 981-986. (in Chinese) | |
[34] |
王亮, 穆培源, 桑伟, 徐红军, 庄丽, 邹波. 新疆小麦品种籽粒硬度及puroindoline基因等位变异的分子检测. 麦类作物学报, 2010, 30(1): 17-22.
doi: 10.7606/j.issn.1009-1041.2010.01.004 |
WANG L, MU P Y, SANG W, XU H J, ZHUANG L, ZOU B. Kernel hardness and allelic variations of Puroindoline genes in Xinjiang wheat cultivars. Journal of Triticeae Crops, 2010, 30(1): 17-22. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2010.01.004 |
|
[35] | 丛花, 王宏飞, 章艳凤, 严勇亮, 池田达哉, 高田兼则, 长峰司. 新疆小麦地方品种籽粒硬度及其Puroindoline基因等位变异研究. 新疆农业科学, 2011, 48(6): 1056-1063. |
CONG H, WANG H F, ZHANG Y F, YAN Y L, TATSUYA I, KANENORI T, TSUKASA N. Identification of the allelic variation of puroindoline alleles in Xinjiang wheat landraces. Xinjiang Agricultural Sciences, 2011, 48(6): 1056-1063. (in Chinese) | |
[36] |
LAGUDAH E S, APPELS R, MCNEIL D. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to makers on chromosome 5. Genome, 1991, 34: 387-395.
doi: 10.1139/g91-060 |
[37] |
XIA L Q, CHEN F, HE Z H, CHEN X M, MORRIS C F. Occurrence of puroindoline alleles in Chinese winter wheat. Cereal Chemistry, 2005, 82: 38-43.
doi: 10.1094/CC-82-0038 |
[38] |
MA X L, SAJJAD M, WANG J, YANG W L, SUN J Z, LI X, ZHANG A M, LIU D C. Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017, 17(1): 158.
doi: 10.1186/s12870-017-1101-8 pmid: 28931378 |
[39] |
MORRIS C F. Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Molecular Biology, 2002, 48: 633-647.
doi: 10.1023/a:1014837431178 pmid: 11999840 |
[40] |
杨保安, 张建伟, 张福彦, 陈建峰, 程仲杰, 陈晓杰, 崔党群. 81份国外小麦品种(系)Puroindoline基因分子鉴定与分析. 核农学报, 2014, 28(5): 2014, 28(5): 817-824.
doi: 10.11869/j.issn.100-8551.2014.04.0817 |
YANG B A, ZHANG J W, ZHANG F Y, CHEN J F, CHENG Z J, CHEN X J, CUI D Q. Molecular identification and analysis of puroindoline alleles in 81 foreign wheat varieties. Journal of Nuclear Agricultural Sciences, 2014, 28(5): 817-824. (in Chinese)
doi: 10.11869/j.issn.100-8551.2014.04.0817 |
|
[41] | 陈锋, 夏先春, Manila William, Morten Lillemo, Richard Trethowan, Roberto J Peňa, 何中虎. CIMMYT小麦puroindoline 基因型的进一步鉴定与分析. 中国农业科学, 2006, 39(8): 1518-1525. |
CHEN F, XIA X C, MANILA W, MORTEN L, RICHARD T, ROBERTO J P, HE Z H. Determination and evaluation of puroindoline alleles in CIMMYT wheats. Scientia Agricultura Sinica, 2006, 39(8): 1518-1525. (in Chinese) | |
[42] |
EAGLES H A, CANE K, EASTWOOD R F, HOLLAMBY G J, KUCHEL H, MARTIN P J, CORNISH G.B. Contributions of glutenin and puroindoline genes to grain quality traits in Southern Australian wheat breeding programs. Australian Journal of Agricultural Research, 2006, 57: 179-186.
doi: 10.1071/AR05242 |
[43] |
NAGAMINE T, IKEDA T M, YANAGISAWA T, YANAKA M, ISHIKAWA N. The effects of hardness allele Pinb-D1b on the flour quality of wheat for Japanese white salty noodles. Journal of Cereal Science, 2003, 37: 337-342.
doi: 10.1006/jcrs.2002.0505 |
[44] |
穆培源, 桑伟, 王亮, 庄丽, 王祥军, 芦静, 徐红军, 韩新年, 于芳祥. 新疆市售小麦面粉制作新疆拉面的加工品质特性及其专用粉品质评价指标的研究. 麦类作物学报, 2007, 27(6): 1034-1046.
doi: 10.7606/j.issn.1009-1041.2007.06.249 |
MU P Y, SANG W, WANG L, ZHUANG L, WANG X J, LU J, XU H J, HAN X N, YU F X. Study on processing quality of commercial wheat flours in Xinjiang for Xinjiang Hand-Stretched Noodle and quality evaluation parameters of specific flour. Journal of Triticeae Crops, 2007, 27(6): 1034-1046. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2007.06.249 |
|
[45] | 桑伟, 穆培源, 徐红军, 庄丽, 王亮, 于芳祥, 韩新年, 聂迎彬, 邹波. 新疆春小麦品种主要品质性状及其与新疆拉面加工品质的关系. 麦类作物学报, 2008, 28: 772-779. |
SANG W, MU P Y, XU H J, ZHUANG L, WANG L, YU F X, HAN X N, NIE Y B, ZOU B. Main quality traits of the spring wheat cultivars from Xinjiang and their correlations with processing quality of Xinjiang hand-stretched noodle. Journal of Triticeae Crops, 2008, 28: 772-779. (in Chinese) | |
[46] |
CHEN F, HE Z H, CHEN D S, ZHANG C L, ZHANG Y, XIA X C. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats. Journal of Cereal Science, 2007, 45: 59-66.
doi: 10.1016/j.jcs.2006.06.006 |
[1] | 刘丰,蒋佳丽,周琴,蔡剑,王笑,黄梅,仲迎鑫,戴廷波,曹卫星,姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析[J]. 中国农业科学, 2022, 55(19): 3723-3737. |
[2] | 樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证[J]. 中国农业科学, 2021, 54(8): 1751-1760. |
[3] | 严勇亮,时晓磊,张金波,耿洪伟,肖菁,路子峰,倪中福,丛花. 春小麦籽粒主要品质性状的全基因组关联分析[J]. 中国农业科学, 2021, 54(19): 4033-4047. |
[4] | 刘思辰,曹晓宁,温琪汾,王海岗,田翔,王君杰,陈凌,秦慧彬,王纶,乔治军. 山西谷子地方品种农艺性状和品质性状的综合评价[J]. 中国农业科学, 2020, 53(11): 2137-2148. |
[5] | 杨清华,邱军,李海,杨天育,程炳文,赵敏,刘国庆,高小丽,冯佰利. 糜子育成品种农艺、产量及品质性状综合鉴定与评价[J]. 中国农业科学, 2017, 50(23): 4530-4544. |
[6] | 高小莉,胡江,郭淑珍,石斌刚,谢建鹏,罗玉柱,王继卿,牟永娟. 牦牛DGAT1基因多态性及其与乳质性状关联分析[J]. 中国农业科学, 2017, 50(16): 3215-3225. |
[7] | 罗凯,卢会翔,吴正丹,吴雪莉,尹旺,唐道彬,王季春,张凯. 中国西南地区甘薯主要育种亲本的遗传多样性及群体结构分析[J]. 中国农业科学, 2016, 49(3): 593-608. |
[8] | 刘 硕,刘有春,刘 宁,张玉萍,章秋平,徐 铭,张玉君,刘威生. 李属(Prunus)果树品种资源果实糖和酸的组分及其构成差异[J]. 中国农业科学, 2016, 49(16): 3188-3198. |
[9] | 相吉山1, 2, 穆培源1, 2, 桑伟1, 2, 聂迎彬1, 徐红军1, 庄丽2, 3, 崔凤娟1, 2, 韩新年1, 邹波1. 小麦粒重基因TaCwi-A1功能标记CWI22、CWI21的验证及应用[J]. 中国农业科学, 2014, 47(13): 2671-2679. |
[10] | 关二旗, 魏益民, 张波, 郭进考, 张国权, 刘彦军, 罗勤贵, 班进福. 黄淮冬麦区部分区域小麦品种构成及品质性状分析[J]. 中国农业科学, 2012, 45(6): 1159-1168. |
[11] | 鲁云风, 王茜, 黄文波, 史利华, 吴克亮. 畜禽保种群体遗传多样性的模拟[J]. 中国农业科学, 2012, 45(18): 3849-3858. |
[12] | 姚义, 霍中洋, 张洪程, 夏炎, 倪晓诚, 戴其根, 许轲, 魏海燕, 肖跃成, 王显. 播期对麦茬直播粳稻产量及品质的影响[J]. 中国农业科学, 2011, 44(15): 3098-3107. |
[13] | 兰孟焦, 杨泽茂, 石玉真, 葛瑞华, 李爱国, 张保才, 李俊文, 商海红, 刘爱英, 王涛, 袁有禄. 陆海BC4F2和BC4F3代换系的评价及纤维产量与品质相关QTL的检测[J]. 中国农业科学, 2011, 44(15): 3086-3097 . |
[14] | 汪小飞,周耘峰,黄埔,向其柏,尤传楷,孙龙 . 石榴品种数量分类研究[J]. 中国农业科学, 2010, 43(5): 1093-1098 . |
[15] | 陈国平,张新,周瑞阳,赵洪涛 . 广西南部宿生陆地棉产量和品质性状变化规律 [J]. 中国农业科学, 2010, 43(15): 3106-3114 . |
|